首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Pyrolysis mass spectrometry (PyMS) was used to produce biochemical fingerprints from replicate frozen cell cultures of mouse macrophage hybridoma 2C11-12, human leukaemia K562, baby hamster kidney BHK 21/C13, and mouse tumour BW-O, and a fresh culture of Chinese hamster ovary CHO cells. The dimensionality of these data was reduced by the unsupervised feature extraction pattern recognition technique of auto-associative neural networks. The clusters observed were compared with the groups obtained from the more conventional statistical approaches of hierarchical cluster analysis. It was observed that frozen and fresh cell line cultures gave very different pyrolysis mass spectra. When only the frozen animal cells were analysed by PyMS, auto-associative artificial neural networks (ANNs) were employed to discriminate between them successfully. Furthermore, very similar classifications were observed when the same spectral data were analysed using hierarchical cluster analysis. We demonstrate that this approach can detect the contamination of cell lines with low numbers of bacteria and fungi; this approach could plausibly be extended for the rapid detection of mycoplasma infection in animal cell lines. The major advantages that PyMS offers over more conventional methods used to type cell lines and to screen for microbial infection, such as DNA fingerprinting, are its speed, sensitivity and the ability to analyse hundreds of samples per day. We conclude that the combination of PyMS and ANNs can provide a rapid and accurate discriminatory technique for the authentication of animal cell line cultures.  相似文献   

2.
We present a system for multi-class protein classification based on neural networks. The basic issue concerning the construction of neural network systems for protein classification is the sequence encoding scheme that must be used in order to feed the neural network. To deal with this problem we propose a method that maps a protein sequence into a numerical feature space using the matching scores of the sequence to groups of conserved patterns (called motifs) into protein families. We consider two alternative ways for identifying the motifs to be used for feature generation and provide a comparative evaluation of the two schemes. We also evaluate the impact of the incorporation of background features (2-grams) on the performance of the neural system. Experimental results on real datasets indicate that the proposed method is highly efficient and is superior to other well-known methods for protein classification.  相似文献   

3.
The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic “theta phase precession” observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object–place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object–place associations in the hierarchical network formed by theta phase precession. The results show that multiple object–place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object–place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object–place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.  相似文献   

4.
The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain''s network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics.  相似文献   

5.
A new method based on neural networks to cluster proteins into families is described. The network is trained with the Kohonen unsupervised learning algorithm, using matrix pattern representations of the protein sequences as inputs. The components (x, y) of these 20×20 matrix patterns are the normalized frequencies of all pairs xy of amino acids in each sequence. We investigate the influence of different learning parameters in the final topological maps obtained with a learning set of ten proteins belonging to three established families. In all cases, except in those where the synaptic vectors remains nearly unchanged during learning, the ten proteins are correctly classified into the expected families. The classification by the trained network of mutated or incomplete sequences of the learned proteins is also analysed. The neural network gives a correct classification for a sequence mutated in 21.5%±7% of its amino acids and for fragments representing 7.5%±3% of the original sequence. Similar results were obtained with a learning set of 32 proteins belonging to 15 families. These results show that a neural network can be trained following the Kohonen algorithm to obtain topological maps of protein sequences, where related proteins are finally associated to the same winner neuron or to neighboring ones, and that the trained network can be applied to rapidly classify new sequences. This approach opens new possibilities to find rapid and efficient algorithms to organize and search for homologies in the whole protein database.  相似文献   

6.
A neural mechanism for control of dynamics and function of associative processes in a hierarchical memory system is demonstrated. For the representation and processing of abstract knowledge, the semantic declarative memory system of the human brain is considered. The dynamics control mechanism is based on the influence of neuronal adaptation on the complexity of neural network dynamics. Different dynamical modes correspond to different levels of the ultrametric structure of the hierarchical memory being invoked during an associative process. The mechanism is deterministic but may also underlie free associative thought processes. The formulation of an abstract neural network model of hierarchical associative memory utilizes a recent approach to incorporate neuronal adaptation. It includes a generalized neuronal activation function recently derived by a Hodgkin-Huxley-type model. It is shown that the extent to which a hierarchically organized memory structure is searched is controlled by the neuronal adaptability, i.e. the strength of coupling between neuronal activity and excitability. In the brain, the concentration of various neuromodulators in turn can regulate the adaptability. An autonomously controlled sequence of bifurcations, from an initial exploratory to a final retrieval phase, of an associative process is shown to result from an activity-dependent release of neuromodulators. The dynamics control mechanism may be important in the context of various disorders of the brain and may also extend the range of applications of artificial neural networks.  相似文献   

7.
 Nonlinear associative memories as realized, e.g., by Hopfield nets are characterized by attractor-type dynamics. When fed with a starting pattern, they converge to exactly one of the stored patterns which is supposed to be most similar. These systems cannot render hypotheses of classification, i.e., render several possible answers to a given classification problem. Inspired by von der Malsburg’s correlation theory of brain function, we extend conventional neural network architectures by introducing additional dynamical variables. Assuming an oscillatory time structure of neural firing, i.e., the existence of neural clocks, we assign a so-called phase to each formal neuron. The phases explicitly describe detailed correlations of neural activities neglected in conventional neural network architectures. Implementing this extension into a simple self-organizing network based on a feature map, we present an associative memory that actually is capable of forming hypotheses of classification. Received: 6 December 1993/Accepted in revised form: 14 July 1994  相似文献   

8.
Guided by the neurobiological principles of self-organization and population coding, we develop a simple, neural, one-layer model for auto-association. Its core is a feature map endowed with self-organized lateral connections. Input patterns are coded by small spots of active neurons. The time evolution of neural activity then realizes an auto-association process by a recurrent attractor dynamics. Population coding is preserved due to a balance of diffusive spreading of activity and competitive refocusing. Because of its simplicity, the model allows a thorough qualitative and quantitative understanding. We show that the network is capable of performing a cluster analysis and hierarchical classification of data and, thus, qualifies as a tool for unsupervised statistical data analysis.  相似文献   

9.
 A neural mechanism for control of dynamics and function of associative processes in a hierarchical memory system is demonstrated. For the representation and processing of abstract knowledge, the semantic declarative memory system of the human brain is considered. The dynamics control mechanism is based on the influence of neuronal adaptation on the complexity of neural network dynamics. Different dynamical modes correspond to different levels of the ultrametric structure of the hierarchical memory being invoked during an associative process. The mechanism is deterministic but may also underlie free associative thought processes. The formulation of an abstract neural network model of hierarchical associative memory utilizes a recent approach to incorporate neuronal adaptation. It includes a generalized neuronal activation function recently derived by a Hodgkin-Huxley-type model. It is shown that the extent to which a hierarchically organized memory structure is searched is controlled by the neuronal adaptability, i.e. the strength of coupling between neuronal activity and excitability. In the brain, the concentration of various neuromodulators in turn can regulate the adaptability. An autonomously controlled sequence of bifurcations, from an initial exploratory to a final retrieval phase, of an associative process is shown to result from an activity-dependent release of neuromodulators. The dynamics control mechanism may be important in the context of various disorders of the brain and may also extend the range of applications of artificial neural networks. Received: 19 April 1995/Accepted in revised form: 8 August 1995  相似文献   

10.
In this pilot study, we used an unsupervised learning algorithm for self-organization and pattern matching to create feature maps that can be applied to morphological problems. We designed a network to analyze 83 first and/or second upper and lower molar sets representing 13 anthropoid primate species, based on three-dimensional measures obtained from laser-digitized, virtual specimens. As shown in a comparison with a principal-component analysis of the virtual specimens, the artificial neural network approach provided more biologically meaningful information than the conventional multivariate analysis approach. The methodology discovered partitions and hierarchical clusters consistent with anthropoid systematics, from the species (or subspecies) level to the highest categories, by sorting and allocating upper and lower molar teeth. As one might expect, measures of upper molars were richer in phenetic information than those of lower molars, even among the anatomically diverse platyrrhines. We also show that reducing taxonomic noise (i.e. biological variation) by limiting the analysis to a monophyletic subset improves discrimination.  相似文献   

11.
MOTIVATION: Accurate prediction of protein contact maps is an important step in computational structural proteomics. Because contact maps provide a translation and rotation invariant topological representation of a protein, they can be used as a fundamental intermediary step in protein structure prediction. RESULTS: We develop a new set of flexible machine learning architectures for the prediction of contact maps, as well as other information processing and pattern recognition tasks. The architectures can be viewed as recurrent neural network implemantations of a class of Bayesian networks we call generalized input-output HMMs (GIOHMMs). For the specific case of contact maps, contextual information is propagated laterally through four hidden planes, one for each cardinal corner. We show that these architectures can be trained from examples and yield contact map predictors that outperform previously reported methods. While several extensions and improvements are in progress, the current version can accurately predict 60.5% of contacts at a distance cutoff of 8 A and 45% of distant contacts at 10 A, for proteins of length up to 300.  相似文献   

12.
A self-organizing neural network model called LISSOM for the synergetic development of afferent and lateral connections in cortical feature maps is presented. The weight adaptation process is purely activity-dependent, unsupervised, and local. The afferent input weights self-organize into a topological map of the input space. At the same time, the lateral interconnection weights adapt, and a unique lateral interaction profile develops for each neuron. Weak lateral connections die off, leaving a pattern of connections that represents the significant long-term correlations of activity on the feature map. LISSOM demonstrates how self-organization can bootstrap based on input information only, without global supervision or predetermined lateral interaction. The model gives rise to a nontopographically organized lateral connectivity similar to that observed in the mammalian neocortex as illustrated by a LISSOM model of ocular dominance column formation in the primary visual cortex. In addition, LISSOM can potentially account for the development of multiple maps of different modalities on the same undifferentiated cortical architecture. Received: 12 May 1993/Accepted in revised form: 22 September 1993  相似文献   

13.
We investigate the memory structure and retrieval of the brain and propose a hybrid neural network of addressable and content-addressable memory which is a special database model and can memorize and retrieve any piece of information (a binary pattern) both addressably and content-addressably. The architecture of this hybrid neural network is hierarchical and takes the form of a tree of slabs which consist of binary neurons with the same array. Simplex memory neural networks are considered as the slabs of basic memory units, being distributed on the terminal vertexes of the tree. It is shown by theoretical analysis that the hybrid neural network is able to be constructed with Hebbian and competitive learning rules, and some other important characteristics of its learning and memory behavior are also consistent with those of the brain. Moreover, we demonstrate the hybrid neural network on a set of ten binary numeral patters  相似文献   

14.
Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD.  相似文献   

15.
We investigate an artificial neural network model with a modified Hebb rule. It is an auto-associative neural network similar to the Hopfield model and to the Willshaw model. It has properties of both of these models. Another property is that the patterns are sparsely coded and are stored in cycles of synchronous neural activities. The cycles of activity for some ranges of parameter increase the capacity of the model. We discuss basic properties of the model and some of the implementation issues, namely optimizing of the algorithms. We describe the modification of the Hebb learning rule, the learning algorithm, the generation of patterns, decomposition of patterns into cycles and pattern recall.  相似文献   

16.
In the last decades a standard model regarding the function of the hippocampus in memory formation has been established and tested computationally. It has been argued that the CA3 region works as an auto-associative memory and that its recurrent fibers are the actual storing place of the memories. Furthermore, to work properly CA3 requires memory patterns that are mutually uncorrelated. It has been suggested that the dentate gyrus orthogonalizes the patterns before storage, a process known as pattern separation. In this study we review the model when random input patterns are presented for storage and investigate whether it is capable of storing patterns of more realistic entorhinal grid cell input. Surprisingly, we find that an auto-associative CA3 net is redundant for random inputs up to moderate noise levels and is only beneficial at high noise levels. When grid cell input is presented, auto-association is even harmful for memory performance at all levels. Furthermore, we find that Hebbian learning in the dentate gyrus does not support its function as a pattern separator. These findings challenge the standard framework and support an alternative view where the simpler EC-CA1-EC network is sufficient for memory storage.  相似文献   

17.
Jensen et al. (Learn Memory 3(2–3):243–256, 1996b) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This paper uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.  相似文献   

18.
We investigate the retrieval dynamics in a feature-based semantic memory model, in which the features are coded by neurons of the Hindmarsh-Rose type in the chaotic regime. We consider the retrieval process as consisting of the synchronized firing activity of the neurons coding for the same memory pattern. The retrieval dynamics is investigated for multiple patterns, with particular attention to the case of overlapping memories. In this case, we hypothesize a dynamical nontransitive mechanism based on synchronization, that allows for a shared feature to participate in multiple memory representations. The problem of the choice of a cognitive plausible time-scale for the retrieval analysis is investigated by analyzing the information that can be inferred from finite-time analyses. Different types of indicators are proposed in order to evaluate the temporal dynamics of the neurons engaged in the retrieval process. We interpret the simulation results as suggestive of a role for chaotic dynamics in allowing for flexible composition of elementary meaningful units in memory representations.  相似文献   

19.
20.
Crook N  Jin Goh W 《Bio Systems》2008,94(1-2):55-59
Evidence has been found for the presence of chaotic dynamics at all levels of the mammalian brain. This has led to some searching questions about the potential role that nonlinear dynamics may have in neural information processing. We propose that chaos equips the brain with the equivalent of a kernel trick for solving hard nonlinear problems. The approach presented, which is described as nonlinear transient computation, uses the dynamics of a well known chaotic attractor. The paper provides experimental results to show that this approach can be used to solve some challenging pattern recognition tasks. The paper also offers evidence to suggest that the efficacy of nonlinear transient computation for nonlinear pattern classification is dependent only on the generic properties of chaotic attractors and is not sensitive to the particular dynamics of specific sub-regions of chaotic phase space. If, as this work suggests, nonlinear transient computation is independent of the particulars of any given chaotic attractor, then it could be offered as a possible explanation of how the chaotic dynamics that have been observed in brain structures contribute to neural information processing tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号