首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-Glutamic acid was formed from d-, l-, and dl-PCA with cell-free extract of Pseudomonas alcaligenes ATCC-12815 grown in the medium containing dl-PCA as a sole source of carbon and nitrogen. The enzyme(s) involved in this conversion reaction was distributed in the soluble fraction within the cell and in 0.5 saturated fraction at the fractionation procedure with the saturation of ammonium sulfate. Optimum pH of this enzyme(s) lied at pH 8.5 and optimum temperature was 30°C. Cu (5 × 10?3 m) inhibited the reaction considerably while Ca or Fe accelerated it. PALP (1×10?3 m) also gave an enhanced activity to some extent. The enzyme preparation converted dextro-rotatory enan-thiomorph of PCA to its laevo-rotatory one which in turn was not converted to the opposite rotation direction by this enzyme. Furthermore, the preparation did not, if any, show d-glutamic acid racemase activity. Isotopic experiments with using dl-PCA-1-14C revealed that l-glutamic acid-1-14C was formed by the cleavage of –CO–NH– bond of pyrrolidone ring of PCA. It was concluded that dl-PCA when assimilated by the present bacterium is at first transformed to l-PCA by the optically isomerizing enzyme and subsequently is cleaved to l-glutamic acid probably by the PCA hydrolysing enzyme.  相似文献   

2.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

3.
Crude ammonium sulfate fraction of a cell free extract from Bacillus natto contained an enzyme (or enzymes) which catalyzed the transamidation reaction specific for glutamine. Both l- and d-isomers of glutamine were active as substrate. On incubation of l- or d-glutamine with the enzyme preparation, two peptides consisting of glutamic acid and glutamine were formed. The main component of the peptides was readily isolated by ion-exchange chromatography and identified as γ-glutamylglutamine by paper chromatography and by paper electrophoresis using authentic peptides. The optical configuration of the amino acid residues in the dipeptide was determined by digestion of the acid hydrolyzate with l-glutamic acid decarboxylase, and the result showed that the dipeptide obtained from l-glutamine was a l-l isomer, while the dipeptide from d-glutamine was a d-d isomer.  相似文献   

4.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

5.
An inducible tryptophanase was crystallized from the cell extract of Proteus rettgeri grown in a medium containing l-tryptophan. The purification procedure included ammonium sulfate fractionation, heat treatment, DEAE-Sephadex and hydroxylapatite column chromatographies. Crystals were obtained from solutions of the purified enzyme by the addition of ammonium sulfate.

The crystalline enzyme preparation was homogeneous by the criteria of ultracentrifugation and zone electrophoresis. The molecular weight was determined to be approximately 210,000.

The crystalline enzyme catalyzed the degradation of l-tryptophan into indole, pyruvate and ammonia in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from 5-hydroxy-l-tryptophan, 5-methyl-l-tryptophan, S-methyl-l-cysteine and l- cysteine. l-, d-Alanine, l-phenylalanine and indole inhibited pyruvate formation from these substrates.  相似文献   

6.
Cysteine mercaptals and mercaptoles were prepared by the reactions of l-cystine with formaldehyde, acetaldehyde, n-butyraldehyde, benzaldehyde, furfural, pyruvic acid and levulinic acid in 6 n hydrochloric or sulfuric acid. Hydrogen sulfide released from cysteine mercaptals and mercaptoles in heated aqueous solutions (oil bath: 120°C) was determined. Although a small amount of hydrogen sulfide was liberated from l-cystine on one hour heating, its amount increased suddenly after three hours. Among these compounds l-cystine mercaptal of furfural was most unstable and a large amount of hydrogen sulfide was produced.  相似文献   

7.
A thiaisoleucine-resistant mutant, ASAT–372, derived from a threonine producer of Corynebacterium glutamicum, KY 10501, produced 5 mg/ml each of l-isoleucine and l-threonine. l-Isoleucine productivity of ASAT–372 was improved stepwise, with concurrent decrease in threonine production, by successively endowing it with resistivity to such substances as ethionine, 4-azaleucine and α-aminobutyric acid. The mutant strain finally selected, RAM–83, produced 9.7 mg/ml of l-isoleucine with a medium containing 10% (as sugar) molasses.

l-Isoleucine production was significantly affected by the concentration of ammonium sulfate in the fermentation medium. At 4% ammonium sulfate l-isoleucine production was enhanced whereas l-threonine production was suppressed. At 2% ammonium sulfate l-threonine production was stimulated while l-isoleucine production decreased.  相似文献   

8.
d-Glucose-isomerizing enzyme has been extracted in high yield from d-xylose-grown cells of Bacillus coagulans, strain HN-68, by treating with lysozyme, and purified approximately 60-fold by manganese sulfate treatment, fractionation with ammonium sulfate and chromatography on DEAE-Sephadex column. The purified d-glucose-isomerizing enzyme was homogeneous in polyacrylamide gel electrophoresis and ultracentrifugation and was free from d-glucose-6-phosphate isomerase. Optimum pH and temperature for activity were found to be pH 7.0 and 75°C, respectively. The enzyme required specifically Co++ with suitable concentration for maximal activity being 10?3 m. In the presence of Co++, enzyme activity was inhibited strongly by Cu++, Zn++, Ni++, Mn++ or Ca++. At reaction equilibrium, the ratio of d-fructose to d-glucose was approximately 1.0. The enzyme catalyzed the isomerization of d-glucose, d-xylose and d-ribose. Apparent Michaelis constants for d-glucose and d-xylose were 9×10?2 m and 7.7×10?2 m, respectively.  相似文献   

9.
The bacterium, which was isolated from soil and identified as Enterobacter sp., was induced by hexachlorophen (HCP) and chlorhexidine (CH), as well as benzalkonium chloride (BC), to produce acidic polysaccharide. HCP is a bisphenol and CH is a bisbiguanido, while BC is a quarternary ammonium compound. The cells produced the maximum amount of the polysaccharide (0.3 ~ 0.9 mg as total sugar/mg dry weight cells) in a 0.07m potassium phosphate buffer (pH 7.2) containing 0.22 m glucose and approximately 0.1 mm BC or HCP, or 0.06 mm CH. There was no growth of the cells in these conditions. The polysaccharides produced in the presence of each drug were all composed of fucose, glucose, galactose and glucuronic acid. At the optimum concentration for polysaccharide production, a large amount of UV-absorbing material was released from the cells.  相似文献   

10.
Neutral sugar composition of cell walls of suspension-cultured tobacco cells was examined with the advance of culture age by an anion-exchange chromatography. Isolated cell walls gave on hydrolysis the following sugars: 2% of l-rhamnose, 6% of d-mannose, 26% of l-arabinose, 13% of d-galactose, 8% of d-xylose and 47% of d-glucose as neutral sugars. Little changes in composition of cell wall polysaccharides were recognized with the advance of culture age. Sugar composition of the extra-cellular polysaccharides was similar to that of hemicellulose fraction from cell walls. Pectinic acid gave on hydrolysis 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, d-galacturonic acid and its oligosaccharides.  相似文献   

11.
Succeeding to asterosaponin A, the second saponin component has been isolated from a starfish (Asterias amurensis) and designated asterosaponin B. It contains a conjugated ketone and one molecule of sulfuric acid as the sodium salt. The sugar moiety consists of two molecules of d-quinovose and one molecule each of D-fucose, d-xylose, and d-galactose, differing from that of asterosaponin A consisting of two molecules each of d-quinovose and d-fucose. On acid hydrolysis both asterosaponins A and B yielded the similar mixture of aglycon components. The two main components isolated were designated asterogenins I and II, respectively.  相似文献   

12.
The distribution of γ-glutamylcysteine synthetase (l-glutamate: L-cysteine γ-ligase, EC 6.3.2.2) was investigated in bacteria, and the enzyme was purified from Proteus mirabilis approximately 9,000-fold with an over-all yield of 10%. The purification procedure included ammonium sulfate fractionation, protamine treatment, DEAE-cellulose and hydroxylapatite column chromatographies and Sephadex gel filtrations. The purified enzyme was homogeneous by the criteria of ultracentrifugation. It showed multiple bands on disc-polyacrylamide gel electrophoresis and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One band with a molecular weight of 62,000 was obtained on SDS-polyacrylamide gel electrophoresis after cross-linking of the enzyme with dimethylsuberimidate. The molecular weight was determined from the sedimentation and diffusion coefficients to be 64,000 and by Sephadex G-150 gel filtration to be 62,000. The purified enzyme catalyzed the stoichiometric formation of γ-glutamylcysteine and the reaction showed a sigmoidal dependence upon l-cysteine concentration. The enzyme also catalyzed γ-glutamyl amino acid formation from l-α-aminobutyrate, l-homoserine, glycine, l-serine, dl-norvaline or dl-homocysteine, but at lower rates than from l-cysteine. The γ-glutamyl-α-aminobutyrate formation by the enzyme did not show a sigmoidal but a hyperbolic dependence upon l-α-aminobutyrate concentration.  相似文献   

13.
D-Mannitol dehydrogenase (EC 1.1.1.138) was purified and crystallized for the first time from the cell-free extract of Gluconobacter suboxydans IFO 12528. The enzyme was purified about 100-fold by a procedure involving ammonium sulfate fractionation, DEAE-Sephadex A-50 column chromatography, and gel filtration by a Sephadex G-75 column. The enzyme was completely separated from a similar enzyme, NAD-dependent D-mannitol dehydrogenase (EC 1.1.1.67), during enzyme purification. There being sufficient purity of the enzyme at this stage, the enzyme was crystallized, by the addition of ammonium sulfate, to fine needles. The crystalline enzyme showed a single sedimentation peak in analytical ultracentrifugation, giving an apparent sedimentation constant of 3.6 s. The molecular mass of the enzyme was estimated to be 50 kDa by SDS-PAGE and gel filtration chromatography. Oxidation of D-mannitol to D-fructose and reduction of D-fructose to D-mannitol were specifically catalyzed with NADP and NADPH, respectively. NAD and NADH were inert for the enzyme. Since the reaction equilibrium declined to D-fructose reduction over a wide pH range, the enzyme showed several advantages for direct enzymatic measurement of D-fructose. Even in the presence of a large excess of D-glucose and other substances, oxidation of NADPH to NADP was highly specific and stoichiometric to the D-fructose reduced.  相似文献   

14.
N-Benzoylgiycine amidohydrolase (hippurate hydrolase EC 3.5.1.32), which catalyzes the hydrolysis of hippuric acid to benzoic acid and glycine, was found in a cell-free extract of Pseudomonas putida C692-3 grown on a medium containing hippuric acid. The enzyme was purified from the extract by ammonium sulfate fractionation and column chromatographies on DEAE-cellulose, DEAE-Sephadex A-50, hydroxyapatite, and Sepharose CL-6B. The enzyme was finally crystallized. The crystalline enzyme was almost homogeneous on electrophoresis. The enzyme had a molecular weight of about 170,000 and consisted of four subunits identical in molecular weight (approximately 42,000). The enzyme hydrolyzed N-benzoylglycine most rapidly, and N-benzoyl-l-alanine and N-benzoyl-l-aminobutyric acid. The Km value for these substrates were 0.72 mm, 0.87 mm, and 0.87mm, respectively. The optimum pH of the enzyme reaction was 7.0 to 8.0 and the enzyme was stable from pH 6.0 to 8.0.  相似文献   

15.
We investigated macrophage activation by fucoidan from Laminaria angustata var. longissima in a murine macrophage cell line, RAW 264.7. The ratio of the chemical composition of the fucoidan was L-fucose:D-galactose:D-glucose:D-xylose:uronic acid:sulfate = 1.00:0.54:0.08:0.08:0.64:0.87. The fucoidan induced production of nitric oxide, tumor necrosis factor-α, and interleukin-6 in RAW 264.7 cells. These results indicate that the fucoidan induced macrophage activation.  相似文献   

16.
The structure of an acidic polysaccharide elaborated by Bacillus polymyxa S-4 was investigated in relation to its physiological activity, particularly, its hypocholesterolemic effect on experimental animals. The polysaccharide is composed of d-glucose, d-mannose, d-galactose, d-glucuronic acid, and d-mannuronic acid (molar ratio 3:3:1: 2:1). Methylation and fragmentation analyses, such as Smith degradation and partial acid hydrolysis showed that the polysaccharide has a complicated, highly branched structure, consisting mainly of (1 → 3)- and (1 → 4)-d-glycosidic linkages. The backbone chain containing d-glucuronic acid, d-mannose, and d-galactose residues is attached at the C-3, C-4, and C-4 positions, respectively, with side chains of single or a few carbohydrate units, which are terminated with d-glucose or d-mannose residues.  相似文献   

17.
Polyol dehydrogenases of Acetobacter melanogenum were investigated. Three polyol dehydrogenases, i. e. NAD+-linked d-mannitol dehydrogenase, NAD+-linked sorbitol dehydrogenase and NADP+-linked d-mannitol dehydrogenase, in the soluble fraction of the organism were purified 12-fold, 8-fold and 88-fold, respectively, by fractionation with ammonium sulfate and DEAE-cellulose column chromatography. NAD+-linked sorbitol dehydrogenase reduced 5-keto-d-fructose (5KF) to l-sorbose in the presence of NADH, whereas NADP+-linked d-mannitol dehydrogenase reduced the same substrate to d-fructose in the presence of NADPH. It was also shown that NAD+-linked d-mannitol dehydrogenase was specific for the interconversion between d-mannitol and d-fructose and that this enzyme was very unstable in alkaline conditions.  相似文献   

18.
An alkalophilic Bacillus No. KX-6 isolated from soil produced a d-xylose isomerase in alkaline media. The striking characteristic of this bacterium was its especially good growth in alkaline media. The d-xylose isomerase of this bacterium was purified by ammonium sulfate fractionation, DEAE-Sepharose ion exchange column chromatography and G-200 gel Alteration. The molecular weight and sedimentation constant were approximately 120,000 and 9.35 S, respectively. The enzyme was most active at pH 7~10 and was stable at pH 6.0 to 11.0. Enzyme activity was stimulated by cobalt ion but inhibited by Hg2 +, Ag2 +, and Cu2 +. Substrate specificity studies showed that this enzyme was active on d-xylose, d-glucose, d-ribose, and d-arabinose. The smaller Km value and larger Vmax value for d-xylose indicated that this enzyme is essentially d-xylose isomerase.  相似文献   

19.
The β-d-glucosidase (EC. 3.2.1.21) activity of Bifidobacterium breve 203 was increased by acclimation with cellobiose, and the enzyme was purified to homogeneity from cell-free extracts of an acclimatized strain of B. breve clb, by ammonium sulfate fractionation and column chromatographies of anion-exchange, gel filtration, Gigapaite, and hydrophobic interaction. This enzyme had not only β- d-glucosidase activity but also β- d-fucosidase activity, which is specific to Bifidobacteria in intestinal flora. The molecular weight of the purified enzyme was estimated to be 47,000–48,000 and the enzyme was assumed to be a monomeric protein. The optimum pH and temperature of the enzyme were around 5.5 and 45°C, respectively. The enzyme was stable up to 40°C and between pH 5 and 8. The isoelectric point of the enzyme was 4.3 and the Km values for p-nitrophenyl-β-d-glucoside and p-nitrophenyl-β-d-fucoside were 1.3mm and 0.7 mm, respectively. This enzyme had also transferase activity for the β-d-fucosyl group but not for the β-d-glucosyl group. The N-terminal amino acid sequence of this enzyme was similar to those of β-d-glucosidase from other bacteria, actinomycetes, and plants.  相似文献   

20.
Seven optical active 2-benzylamino alcohols were synthesized by reduction of N-benzoyl derivatives of L-alanine, L-valine, L-leucine, L-phenylalanine, L-aspartic acid, L-glutamic acid and L-lysine and applied for the resolution of (±)-trans-chrysanthemic acid. d-trans-Chrys-anthemic acid was obtained by resolution via the salts of 2-benzylamino alcohols derived from L-valine and L-leucine, while (?)-trans-chrysanthemic acid was prepared through the salts of the amino alcohols derived from L-alanine and L-phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号