首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thraustochytrium sp. ATCC 20892 produced high yields of docosahexaenoic acid (DHA), more than four other strains of Thraustochytrium and Schizochytrium tested, but insignificant amounts of other polyunsaturated fatty acids. Glucose and sodium glutamate were the preferred carbon and nitrogen sources, respectively, and the optimum conditions for growth and DHA production were pH 7.0 at 25°C with 40 g glucose 1-1 for 4 days. Temperature profiling under these optimum conditions further enhanced the yield and volumetric productivity of DHA.  相似文献   

2.
Aromatic and heterocyclic aldehydes may be produced by the mandelate pathway of Pseudomonas putida ATCC 12633 via the biotransformation of benzoyl formate and substrate analogues. Under optimised biotransformation conditions (37 °C, pH 5.4) and with benzoyl formate as a substrate, benzaldehyde may be accumulated with yields above 85%. Benzaldehyde is toxic to P. putida ATCC 12633; levels above 0.5 g/l (5 mM) reduce the biotransformation activity. Total activity loss occurs at an aldehyde concentration of 2.1 g/l (20 mM). To overcome this limitation, the rapid removal of the aldehyde is desirable via in situ product removal. The biotransformation of benzoyl formate (working volume 1 l) without in situ product removal accumulates 2.1 g/l benzaldehyde. Benzaldehyde removal by gas stripping produces a total of 3.5 g/l before inhibition. However, the most efficient method is solid-phase adsorption using activated charcoal as the sorbant, this allows the production of over 4.1 g/l benzaldehyde. Addition of bisulphite as a complexing agent causes inhibition of the biotransformation and bisulphite is therefore is not suitable for in situ product removal. Received: 16 March 1998 / Received revision: 20 May 1998 / Accepted: 21 May 1998  相似文献   

3.
Summary Mutants were isolated from Microbacterium sp. no. 205 (ATCC 21376) producing 13–30mm cyclic adenosine 3,5-monophosphate (cAMP) by salvage biosynthesis, through sequential improvements of the bacterium for the purpose of improving cAMP production. The mutants produced 50–75 mm cAMP on 100 mm inosine 5-monophosphate as a precursor. Mutants resistant to the inhibition of growth by cAMP at high concentrations were isolated; the resistance was one of four characteristics effective for improved production of cAMP.  相似文献   

4.
Summary Among various soil microorganisms tested only Pseudomonas putida isolate 1065 and Rhizopus japonicus ATCC 24794 were able to transform o-toluate. In P. putida o-toluate was quantitatively hydroxylated to give 2-hydroxymethyl-benzoate and in R. japonicus it was reduced to 2-hydroxymethyltoluene. Both compounds, which were identified on the basis of their physical properties, accumulated during a one week growth period.  相似文献   

5.
Wu G  Ding J  Li H  Li L  Zhao R  Shen Z  Fan X  Xi T 《Current microbiology》2008,57(6):552-557
This study analyzes the in vitro effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332. Thanatin and s-thanatin were synthesized by the solid-phase method using a model 432A synthesizer. The bacterial strains tested included two antibiotic-susceptible strains of Escherichia coli ATCC25922 and B. subtilis ATCC21332. Susceptibility determinations were carried out either in a variety of cation concentrations or in pH conditions from pH 5 to pH 8. NaCl or KCl was added to the media to final concentrations of 0, 10, 50, 100, 200, and 500 mM, whereas CaCl2 and MgCl2 were added to the media to final concentrations of 0, 1, 2, 5, 10, and 20 mM. The antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332 decreased, as indicated by the increasing minimal inhibitory concentrations (MICs) of both peptides with increasing concentrations of Na+/K+/Ca2+/Mg2+. Both peptides lost their activities at 500 mM Na+/K+ but retained them at 20 mM Ca2+/Mg2+. Both peptides have MICs that are not significantly different at a variety of pH levels, with the antimicrobial activity slightly higher in neutral or slightly basic media than under acidic conditions. The antimicrobial peptides thanatin and s-thanatin, which have an anti-parallel β-sheet constrained by disulfide bonds, were salt sensitive against both Gram-positive and Gram-negative pathogens in vitro. Determining the reason why the thanatins are salt sensitive would be useful to provide an understanding of how thanatin and s-thanatin kill bacteria. Futher investigation of the antimicrobial properties of these peptides is warranted. G. Wu and J. Ding contributed equally to this article.  相似文献   

6.
The evolution of aromatic amino acid biosynthesis and its regulation is under study in a large assemblage of prokaryotes (Superfamily A) whose phylogenetic arrangement has been constructed on the criterion of oligonucleotide cataloging. One section of this Superfamily consists of a well defined (rRNA homology) cluster denoted as Group III pseudomonads. Pseudomonas acidovorans ATCC 11299a, a Group III member, was chosen for indepth studies of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, the initial regulatory enzyme of aromatic biosynthesis. This strain is of particular interest for evolutionary studies of aromatic metabolism because it possesses phenylalanine hydroxylase, an enzyme whose physiological role and distribution among prokaryotes is largely unknown. Although P. acidovorans ATCC 11299a has been of uncertain identity, we now establish it unambiguously as a species of acidovorans by virtue of its 87% DNA homology with P. acidovorans ATCC 15668 (type strain). This result conformed with enzyme patterning studies which placed ATCC 11299a into pseudomonad Group IIIa, a subgroup containing the acidovorans species. Crude extracts of Group III pseudomonads had previously been shown to share, as a common group characteristic, sensitivity of DAHP synthase to feedback inhibition by either l-tyrosine or l-phenylalanine. Detailed studies with partially purified preparations from strain ATCC 11299a revealed the presence of two distinct regulatory isozymes, DAHP synthase-phe and DAHP synthase-tyr. DAHP synthase-tyr is tightly controlled by l-tyrosine with 50% inhibition of activity being achieved at 4.0 M effector. DAHP synthase-phe is inhibited 50% by 40 M l-phenylalanine and exhibits dramatic changes in levels of activity, as well as chromatographic elution patterns, in response to dithiothreitol. This two-isozyme pattern of DAHP synthase has not been described previously, although it may prove to be widespread.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - E4P d-erythrose-4-phosphate - PEP phosphoenolpyruvate - DTT dithiothreitol - BSA fraction V bovine serum albumin  相似文献   

7.
The diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 demonstrates circadian patterns in nitrogenase activity, H2 production and glycogen storage when grown under nitrogen‐fixing, 12:12 light:dark (L:D) conditions. In this study, we grew Cyanothece sp. ATCC 51142, and another strain in this genus, Cyanothece sp. PCC 7822, under long‐day (16:8 L:D) and short‐day (8:16 L:D) nitrogen‐fixing conditions to determine if they continued to display circadian rhythms. Both strains demonstrated similar circadian patterns for all three metabolic parameters when grown under long‐day conditions. However, the strains responded differently to short‐day growth conditions. Cyanothece sp. ATCC 51142 retained reasonable circadian patterns under 8:16 L:D conditions, whereas Cyanothece sp. PCC 7822 had quite damped patterns without a clear circadian pattern. In particular, glycogen storage changed very little throughout the day and we ascribe this to the difference in the type of glycogen granules in Cyanothece sp. PCC 7822 which has small β‐granules, compared to the large, starch‐like granules in Cyanothece sp. ATCC 51142. The results suggested that both mechanistic and regulatory processes play a role in establishing the basis for these metabolic oscillations.  相似文献   

8.
Isolate RS1T isolated from used metalworking fluid was found to be a Gram-negative, motile, and non-spore forming rod. Based on phylogenetic analyses with 16S rRNA, isolate RS1T was placed into the mendocina sublineage of Pseudomonas. The major whole cell fatty acids were C18:1ω7c (32.6%), C16:0 (25.5%), and C15:0 ISO 2OH/C16:1ω7c (14.4%). The sequence similarities of isolate RS1T based on gyrB and rpoD genes were 98.9 and 98.0% with Pseudomonas pseudoalcaligenes, and 98.5 and 98.1% with Pseudomonas oleovorans, respectively. The ribotyping pattern showed a 0.60 similarity with P. oleovorans ATCC 8062T and 0.63 with P. pseudoalcaligenes ATCC17440T. The DNA G + C content of isolate RS1T was 62.2 mol.%. The DNA–DNA relatedness was 73.0% with P. oleovorans ATCC 8062T and 79.1% with P. pseudoalcaligenes ATCC 17440T. On the basis of morphological, biochemical, and molecular studies, isolate RS1T is considered to represent a new subspecies of P. oleovorans. Furthermore, based on the DNA–DNA relatedness (>70%), chemotaxonomic, and molecular profile, P. pseudoalcaligenes ATCC 17440T and P. oleovorans ATCC 8062T should be united under the same name; according to the rules of priority, P. oleovorans, the first described species, is the earlier synonym and P. pseudoalcaligenes is the later synonym. As a consequence, the division of the species P. oleovorans into two novel subspecies is proposed: P. oleovorans subsp. oleovorans subsp. nov. (type strain ATCC 8062T = DSM 1045T = NCIB 6576T), P. oleovorans subsp. lubricantis subsp. nov. (type strain RS1T = ATCC BAA-1494T = DSM 21016T).  相似文献   

9.
Caffeine (1,3,7-trimethylxanthine), a ubiquitous component of human diet has been suggested as a chemical indicator of ecosystem impacts of sewage spills and treated effluent discharges because it is not sufficiently metabolized by wastewater microorganisms. This study identified enzymes responsible for caffeine metabolism in sewage bacteria. Pseudomonas putida biotype A (ATCC 700097) originally isolated as a rare caffeine-degrading organism in domestic wastewater exhibited diauxic growth on caffeine, concomitant with the expression of a P450-type cytochrome and peroxidase enzyme activities. Initial growth phase lasted 13.8 ± 1.4 h with a growth rate that was five times slower than the secondary growth phase that lasted 5.5 ± 1.2 h. Molecular and enzymatic characteristics of the cytochrome P450-type enzyme differ from the previously described cytochrome P450 (P450cam) of P. putida (ATCC 17453) involved in camphor metabolism. The caffeine-inducible cytochrome P450-type enzyme exhibited a carbon monoxide difference spectrum peak at 450 nm, but does not allow growth on camphor. Caffeine induced production of haem-associated peroxidase activity was confirmed with 3,3, 5,5-tetramethylbenzidine–H2O2 reaction in polyacrylamide gels. Polymerase chain reaction (PCR) primers derived from the gene for cytochrome P450cam (camC) of P. putida (ATCC 17453) did not yield an amplification product when DNA extracted from P. putida strain ATCC 700097 was used as template. The data demonstrate that caffeine is metabolized through a specific biphasic pathway driven by oxygen-demanding enzymes.  相似文献   

10.
The citrate metabolism of Lactobacillus helveticus ATCC 15807 was studied under controlled-pH fermentations at pH 4.5 and pH 6.2. The micro-organism was able to co-metabolize citrate and lactose at both pH from the beginning of growth, which enhanced the rate of lactose consumption and lactic acid production, compared with cultures without citrate. The effect of citrate on cell growth was dependent on the balance between the ratio of dissociated to non-dissociated forms of the acetic acid produced and the extra ATP gained by the cells, both facts related to the citrate metabolism. The citrate catabolism determined a change in the fermentation pattern of L. helveticus ATCC 15807 from homolactic to a mixed-acid profile, regardless of the external pH. Within this new fermentation pattern, acetate was the major product formed (13–20 mM), followed by succinate (2.4–3.7 mM), while acetoine, dyacetile or butanediol were not detected. The mixed-acid profile displayed by L. helveticus ATCC 15807 was linked to NADH2 oxidase activity rather than the acetate kinase enzyme.  相似文献   

11.
Summary The cyclomaltodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) gene from an alkalophilic Bacillus circulans var. alkalophilus ATCC21783 was cloned into Escherichia coli and B. subtilis. When cloned from E. coli to B. subtilis, the entire insert containing the CGTase gene was, depending on the plasmid construction, either unstable or the recombinant B. subtilis did not secrete the enzyme in significant amounts. To achieve efficient enzyme production in B. subtilis, the gene was placed under the control of the B. amyloliquefaciens -amylase promoter. In one of the constructions, both the promoter and the signal sequence of the gene were replaced with those of B. amyloliquefaciens, whereas in another construction only the promoter area was exchanged. The recombinant B. subtilis clones transformed with these plasmid constructions secreted CGTase into the culture medium 14 times as much as did the parental strain in shake flask cultures. In fermentor cultures in an industrially feasible medium the enzyme production was substantially higher, yielding 1.2 g/l of CGTase, which is about 33 times the amount of the enzyme produced by the parental strain in corresponding fermentations. Both of the plasmid constructions were stable when grown over 50 generations without antibiotic selection.  相似文献   

12.
A mutant strain of the bacterium Pseudomonas sp. ATCC 31461 that exhibited elevated production of the polysaccharide gellan on glucose or corn syrup as a carbon source was isolated. Gellan production by the mutant strain was about twofold higher than its parent strain on glucose or corn syrup after 48 h of growth, and about 1.4-fold higher after 72 h. An increase in biomass production was not correlated with enhanced gellan synthesis by the mutant strain. The increased gellan production by the mutant strain on either carbon source resulted in an increase in its culture medium viscosity and the viscosity of the isolated polysaccharide produced by glucose-grown cells. No differences in the glucuronic acid content of the polysaccharides produced by the mutant and parent strains were observed. Journal of Industrial Microbiology & Biotechnology (2002) 29, 185–188 doi:10.1038/sj.jim.7000278 Received 13 February 2002/ Accepted in revised form 20 May 2002  相似文献   

13.
The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.  相似文献   

14.
The prodigiosin biosynthetic gene cluster (pig cluster) of Serratia marcescens ATCC 274 (Sma 274) is flanked by cueR/copA homologues. Inactivation of the copA homologue resulted in an increased sensitivity to copper, confirming that CopA is involved in copper homeostasis in Sma 274. The effect of copper on the biosynthesis of prodigiosin in Sma 274 and the copA mutant strain was investigated. Increased levels of copper were found to reduce prodigiosin production in the wild type Sma 274, but increase production in the copA mutant strain. The physiological implications for CopA mediated prodigiosin production are discussed. We also demonstrate that the gene products of pigB–pigE of Sma 274 are sufficient for the biosynthesis of 2-methyl-3-n-amyl-pyrrole and condensation with 4-methoxy-2,2′-bipyrrole-5-carboxyaldehyde to form prodigiosin, as we have shown for Serratia sp. ATCC 39006.  相似文献   

15.
16.
Ralstonia eutropha NCIMB 11599 and ATCC 17699 were grown, and their productions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] compared. In flask cultures ofR. eutropha NCIMB 11599, cell concentration, P(3HB-co-4HB) concentration and polymer content decreased considerably with increases in the γ-butyrolactone concentration, and the 4HB fraction was also very low (maximum 1.74 mol%). In fed-batch cultures ofR. eutropha NCIMB 11599, glucose and γ-butyrolactone were fed as the carbon sources, under a phosphate limitation strategy. When glucose was fed as the sole carbon source, with its concentration controlled using an on-line glucose analyzer, 86% of the P(3HB) homopolymer was obtained from 201 g/L of cells. In a two-stage fed-batch culture, where the cell concentration was increased to 104 g/L, with glucose fed in the first step and constant feeding of γ-butyrolactone, at 6 g/h, in the second, final cell concentration at 67 h was 106 g/L, with a polymer content of 82%, while the 4HB fraction was only 0.7 mol%. When the same feeding strategy was applied to the fedbatch culture ofR. eutropha ATCC 17699, where the cell concentration was increased to 42 g/L, by feeding fructose in the first step and γ-butyrolactone (1.5 g/h) in the second, the final cell concentration, polymer content and 4HB fraction at 74 h were 51 g/L, 35% and 32 mol%, respectively. In summary,R. eutropha ATCC 17699 was better thanR. eutropha NCIMB 11599 in terms of P(3HB-co-4HB) production with various 4HB fractions.  相似文献   

17.
The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of possible carbohydrate-active enzymes (CAZymes). Using mass spectrometry, we have compared the proteins secreted by C. fimi and C. flavigena during growth on the soluble cellulose substrate, carboxymethylcellulose (CMC), as well as a soluble xylan fraction. Many known C. fimi CAZymes were detected, which validated our analysis, as were a number of new CAZymes and other proteins that, though identified in the genome, have not previously been observed in the secretome of either organism. Our data also shows that many of these are co-expressed on growth of either CMC or xylan. This analysis provides a new perspective on Cellulomonas enzymes and provides many new CAZyme targets for characterization.  相似文献   

18.
A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided.  相似文献   

19.
Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb 3-type terminal oxidase and cytochrome caa 3-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.  相似文献   

20.
Gluconobacter spp. possess the enzymic potential for two pathways of direct glucose oxidation. It has been proposed that the major part of glucose is oxidized to gluconate via NADP-dependent glucose dehydrogenase and that reoxidation of NADPH under these conditions proceeds via recycling of gluconate through ketogluconates. This hypothesis was tested in experiments in which Gluconobacter oxydans ATCC 621-H was grown in glucose-yeast extract medium containing [14C]2-ketogluconate. As expected, glucose was almost quantitatively oxidized to gluconate, without further accumulation of 2- and 5-ketogluconate. Interestingly, the total amount of neither [14C]2-ketogluconate nor [14C]gluconate did change significantly during this oxidation phase, indicating that recycling of gluconate through ketogluconates did not occur. An analysis of enzyme activities in cell-free extracts of glucose-grown cells of G. oxydans ATCC 621-H showed that the membrane-bound glucose dehydrogenase was far more active than the NADP-linked glucose dehydrogenase. The activity of the latter enzyme constituted only 10–15% of that of quinoprotein glucose dehydrogenase and was far too low to match the in vivo rates of gluconate production in batch cultures of G. oxydans. It is concluded that under these conditions glucose is mainly oxidized to gluconate via the membrane-bound glucose dehydrogenase. Implications of these results for the regulation of ketogluconate formation are discussed.Abbreviations DCPIP 2,6-dichlorophenolindophenol - PMS phenazine methosulphate - PQQ pyrrolo-quinoline quinone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号