首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactive protease in the cell free extracts obtained from growing cells of Aspergillus sojae KS was collected in a supernatant of ultracentrifugation at 14×l04 g, and in fractions obtained by acetone of 35~50 per cent and by ammonium sulfate of 0.5~0.6 saturation.

The inactive protease has the same resistance against pH or heat treatments as active protease has. The activation of the inactive protease was maximal between pH 5~6, and was accelerated by several kinds of protease, and was not affected by thioglycollate and KCN.  相似文献   

2.
Phenoloxidase in the hemolymph of Sarcophaga bullata larvae is present as an inactive proenzyme form. Localization studies indicate that the majority of the prophenoloxidase is present in the plasma fraction whereas only a minor fraction (about 4%) is present in the cellular compartments (hemocytes). Inactive prophenoloxidase can be activated by zymosan, not by either endotoxin or laminarin. This activation process is inhibited by the serine protease inhibitors, benzamidine and p-nitrophenyl-p~-guanidobenzoate. Exogenously added proteases, such as chymotrypsin and subtilisin, also activated the prophenoloxidase in the whole hemolymph but failed to activate the partially purified proenzyme. However, an activating enzyme isolated from the larval cuticle, which exhibits trypsinlike specificity, activated the partially purified prophenoloxidase. Inhibition studies and activity measurements also revealed the presence of a similar activating enzyme in the hemolymph. Thus, the phenoloxidase system in Sarcophaga bullata larval hemolymph seems to be comprised of a cascade of reactions. An endogenous protease inhibitor isolated from the larvae inhibited chymotrypsin-mediated prophenoloxidase activation but failed to inhibit the cuticular activating enzyme-catalyzed activation. Based on these studies, the roles of prophenoloxidase, endogenous activating proteases, and protease inhibitor in insect immunity are discussed.  相似文献   

3.
Synthesis of chitin inMucor rouxii was studied comparatively in whole cells, spheroplasts, toluene-treated cells, and cell-free extracts in order to determine the cellular location and regulation of chitin synthetase. Our data indicated that most of the enzyme is located inside the permeability barrier of the cell in the form of an inactive precursor. Apparently the enzyme and its destroying factor (protease?) are located in separate compartments of the cell. The role of proteases as the natural activating factors was questioned.  相似文献   

4.
A trypsin-like protease which is responsible for activation of Sendai virus was found in the chorioallantoic fluid (CAF) of embryonated chicken eggs. Treatment of the inactive form of Sendai virus, grown in LLC-MK2 cells, with CAF enhanced both hemolytic activity and infectivity for the cells. Soybean trypsin inhibitor restrained the enhancing activity of CAF. These results indicate that CAF contains a trypsin-like protease which activates the inactive form of Sendai virus. The activation was strongly inhibited by phenylmethylsulfonylfluoride, ethylenediaminetetraacetate, antipain, and leupeptin but not by tosyllysylchloromethylketone, suggesting that the activating enzyme in CAF is a protease similar to but not identical with trypsin. The inactive form of the virion was produced in ovo when the seed virus was inoculated along with antipain or leupeptin. In deembryonated chicken eggs in which CAF was substituted for a culture medium, multiple cycle growth occurred, but not when soybean trypsin inhibitor was present. These observations indicate that some activating enzyme, possibly the same one as found in CAF, was secreted from the chorioallantoic membrane.  相似文献   

5.
Activation of purified urinary inactive kallikrein by an extract from the rat kidney cortex was investigated. The extract produced a dose-dependent activation of the inactive kallikrein and the optimum pH for this activation was 5.0. Marked depression of the activation was observed when the extract was pre-incubated with E-64, p-CMB and iodoacetate, but not with DFP, PMSF or pepstatin A. The molecular weight of the inactive kallikrein (Mr 44,000) was reduced to 38,000 by treatment with the extract, this molecular weight value being identical with that of urinary active kallikrein. These results indicate that the rat kidney cortex contains a protease catalyzing conversion of urinary inactive kallikrein into its active form, and that the protease has properties compatible with those of a thiol protease, but not of trypsin which has been used as a tool for the activation of urinary inactive kallikrein. The thiol protease is probably one of regulators of the kallikrein-kinin system in the kidney.  相似文献   

6.
In the spiny lobster (Panulirus interruptus), unlike other crustaceans most of the prophenoloxidase (proPO) was detected in cell-free plasma (86.3%). In spite of its location, lobster proPO activating system has a similar activation mechanism to other crustacean proPO systems. Haemocyte lysate was able to activate the plasma proPO indicating location of the prophenoloxidase activating enzyme (PPAE) in haemocytes. Lobster haemocyte PPAE was isolated by affinity chromatography and its participation as activating enzyme was demonstrated. This enzyme is a serine-proteinase that transforms the inactive form (proPO) to an active one (phenoloxidase). The PPAE was also present in the cell-free supernatant of haemocytes previously incubated with Vibrio alginolyticus.  相似文献   

7.
A marine organism (Bacillus M1) isolated from Indian Ocean manganese nodules was characterized. The organism grew well in artificial seawater medium, at near neutral pH, 30°C and 0.25 M NaCl, and showed MnO2-reducing activity. Growing cultures of Bacillus M1 as well as cell-free spent liquor from fully-grown cultures were employed to extract metals from the nodules. The spent liquor of cultures of the organism could dissolve around 45% cobalt (Co) at a pH of 8.2 in 2 h. Co recovery by this treatment was comparable to that in acidic leaching with 2.5 M hydrochloric acid solutions, and was independent of pulp density (w/v ratio). The amount of Co dissolved was beyond the thermodynamic solubility limit in aqueous solution at a pH of 8.2. It is inferred that the metabolites present in the spent liquor played a pivotal role in complexing the Fe (III) phase, solubilizing Co in the process. Partial characterization of spent liquor by spot tests, UV visible spectroscopy and FTIR spectroscopy, showed the presence of siderophore-like phenolic compound(s) with an attached carboxyl group that might form soluble organic complexes with Fe (III).  相似文献   

8.
1. Fibrinolysin-activated lysin factor and chloroform-activated serum protease of serum and plasma are one and the same enzyme, differing only in their mode of activation. 2. The enzyme as it normally occurs in serum or plasma is not inactive because of combination with serum inhibitor. It is present as an inactive precursor or zymogen and may be activated from this state by streptococcal fibrinolysin. 3. The activation of serum protease by streptococcal fibrinolysin is a catalytic reaction, analogous to the kinase activation of trypsinogen by enterokinase. Treatment of serum or plasma with chloroform apparently results in removal of serum inhibitor which may allow autocatalytic activation of the serum protease. 4. The serum enzyme differs from trypsin in its pH of optimum activity, in its reactions with specific protease inhibitors, and in its action on casein. 5. A revised nomenclature for the serum enzyme system is suggested which more accurately describes its properties than the terms in current use.  相似文献   

9.
The activation of inactive prorenin by active renin was investigated. Inactive prorenin extensively purified from human plasma was activated by active renin which had been purified from mouse submaxillary glands by multiple chromatographic steps. The apparent lack of protease activity in renin was puzzling in view of the close similarity of its active site structure with that of acid proteases. After a series of affinity chromatographic steps designed to eliminate minute contaminants, renin was found to contain a very low but finite level of a neutral protease activity which was equivalent to 1/40,000 of that of cathepsin D tested by hemoglobinolytic activity. The protease activity was considered as intrinsic to renin since it co-purified with renin persistently at a constant ratio to the renin activity, was precipitated by a monoclonal antibody specific for renin, showed a neutral pH optimum of the enzyme activity in the same pH range as that of renin, and was inhibited by pepstatin. The neutral protease activity is likely to mediate the activation of inactive prorenin.  相似文献   

10.
The existence of the inactive precursors of yeast proteinases B and C was confirmed in the autolysate of baker’s yeast and they were named as pro-proteinases B and C, respectively. The active and inactive forms of proteinase C were two distinct proteins, separable by chromatographical procedures. The two precursors were markedly activated by incubation at pH 5 or by treatment with denaturing agents, e.g. urea, dioxane, acetone and certain alcohols.

These activations were also observed with extracts from acetone-dried cells and from mechanically destructed cells, but the activation of proteinase A was not demonstrated under any conditions tested. Therefore, it was assumed that most of proteinases B and C exist in vivo as inactive precursors, whereas proteinase A originally exists in an active form.

Pro-proteinase C, the latent form of yeast proteinase C, was partially purified from the autolysate of baker’s yeast. It was strongly activated by incubation at pH 5 or by treatment with urea or dioxane. The former activation was prevented by treatment to inactivate yeast proteinase A, which co-existed with the pro-enzyme in the present preparation, but was promoted by addition of purified proteinase A. Thus, it was confirmed that A could activate pro-proteinase C. Furthermore, it was found that activation could be caused by extremes in pH or by heating to 55~60°C, accompanied by the simultaneous destruction of the enzyme produced. Pro-proteinase C was stable over a range of pH 5 to 8 after 60 min incubation at 50°C.  相似文献   

11.
High activity alkaline protease was obtained when the enzyme was immobilized on Dowex MWA-1 (mesh 20–50) with 10% glutaraldehyde in chilled phosphate buffer (M/15, pH 6.5). Activity yields of the protease and rennet were 27 and 29, respectively. The highest activities appeared at 60°C, pH 10 for alkaline protease and 50°C, pH 4.0 for rennet. The properties of both proteases were not essentially changed by the immobilization except that the Km values of both enzymes were increased about tenfold as a result of immobilization. Both proteases in the immobilized state were more stable than those in the free state at 60°C. Other peptide hydrolases, β-galactosidase, invertase, and glucoamylase, were successfully immobilized with high activities, but lipase, hexokinase, glucose-6-phosphate dehydrogenase, and xanthine oxidase became inactive.  相似文献   

12.
In the yeastSaccharomyces cerevisiae thePEP4 gene product, protease A, is responsible for activating all soluble vacuolar (lysosomal) enzymes. These vacuolar enzymes remain inactive inpep4 mutants. Vacuolar trehalase activity was diminished in such mutants as well. This suggests that the vacuolar (lysosomal) trehalase is processed in a manner similar to other vacuolar enzymes inS. cerevisiae.  相似文献   

13.
The major allergen Der p 1 of the house dust mite Dermatophagoides pteronyssinus is a papain-like cysteine protease (CA1) produced as an inactive precursor and associated with allergic diseases. The propeptide of Der p 1 exhibits a specific fold that makes it unique in the CA1 propeptide family. In this study, we investigated the activation steps involved in the maturation of the recombinant protease Der p 1 expressed in Pichia pastoris and the interaction of the full-length and truncated soluble propeptides with their parent enzyme in terms of activity inhibition and BIAcore interaction analysis. According to our results, the activation of protease Der p 1 is a multistep mechanism that is characterized by at least two intermediates. The propeptide strongly inhibits unglycosylated and glycosylated recombinant Der p 1 (KD = 7 nM) at neutral pH. This inhibition is pH dependent. It decreases from pH 7 to pH 4 and can be related to conformational changes of the propeptide characterized by an increase of its flexibility and formation of a molten globule state. Our results indicate that activation of the zymogen at pH 4 is a compromise between activity preservation and propeptide unfolding.  相似文献   

14.
A protease was isolated from the alimentary canal of crickets. This cricket protease was purified by ammonium sulfate, rivanol and acetone fractionations, and DEAE-cellulose and CM-cellulose (Ca-form) column chromatographies. The optimum temperature was 50°C and the optimum pH was 8.0. For preservation, the enzyme was most stable at pH 3.0. Aluminum had the best stabilizing action with no drops of enzyme activity after 24 hours of dialysis. The cricket protease was specific for the synthetic substrate, α-benzoyl-l-arginine amide. Cricket protease had a Km. 103 of 2.8 which is similar to that of trypsin, 1.2. The Ea was 3,770 while that of trypsin was 14,960 using α-benzoyl-l-arginine amide as the substrate. Although cricket protease has the same substrate specificity and similar optimum pH and pH-stability as trypsin, it differed in metal requirements to obtain activity. Certain metals are essential for cricket protease activity.  相似文献   

15.
Dithiothreitol activates the low-Km membrane-bound cyclic AMP phosphodiesterase when incubated with the enzyme in a cell-free system. To investigate the mechanism of its activation, we studied the effect of protease inhibitors. Isolated fat cells obtained from Sprague-Dawley rats were incubated in Krebs-Henseleit Hepes buffer, pH 7.4, at 37 degrees C with and without insulin (2 nM, 10 min). A crude microsomal fraction prepared by differential centrifugation was suspended in 0.25 M sucrose containing 10 mM Tes buffer, pH 7.5, with and without 2 mM dithiothreitol and protease inhibitors at 4 degrees C for 48 h. Dithiothreitol stimulated the phosphodiesterase, in a time-dependent manner. As little as 0.02 mM dithiothreitol activated the enzyme, and the maximally effective dose was 2-10 mM. Among the various protease inhibitors tested, antipain, leupeptin, chymostatin and E-64 were the most effective in preventing activation of the enzyme by dithiothreitol. Antipain also inhibited release of the enzyme from the bound fraction. These results suggest that activation of the low-Km phosphodiesterase by dithiothreitol may be provoked by stimulation of an endogenous thiol protease.  相似文献   

16.
A gram-positive and pleomorphic bacterium (strain I-42) isolated from soil as a producer of exo-l,6-α-glucosidase [EC 3.2.1.70] was identified as Arthrobacter globiformis. This Arthrobacter enzyme, inducible by dextran extracellularly, was partially purified from a cell-free culture supernatant. It was found most active at pH around 6.0 and most stable at pH 6.0~6.5. The enzyme was proved, by several experiments, to attack dextran in the exo-wise fashion to release only glucose leaving a macromolecular limit dextrandextrin. Transglucosylation from dextran to accumulating or added glucose was not observed.  相似文献   

17.
To clarify the possible conversion of prorenin in renin granules where conversion reportedly occurred, we investigated whether the renin granule fraction of the kidney could activate prorenin to the active form. Renin granules were isolated from the dog kidney cortex by discontinuous sucrose density gradient centrifugation. Human active renin was quantified by immunoradiometric assay which could detect only the human active renin but not the inactive human renin or dog renin. Inactive renin from human amniotic fluid was incubated with the subcellular fraction of the dog kidney cortex. The renin granule fraction that showed the highest renin activity stimulated the inactive renin to become the active form. The membrane preparation obtained from the renin granule fraction by freezing and thawing the fraction in low osmolarity retained the activity of renin activation. Other subcellular fractions showed less renin activation. The optimal pH for renin activation by the membrane was pH 5.0 to 6.0. The activation depended on the time of incubation and concentration. The activation was inhibited by N-ethylmaleimide but not by EDTA or serine protease inhibitors. These results suggest that renin is processed by a membrane bound protease in renin granules.  相似文献   

18.
A chitosanase and a protease were purified from the culture supernatant of Serratia sp. TKU016 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of the chitosanase and protease determined by SDS–PAGE were approximately 65 and 53 kDa, respectively. The chitosanase was inhibited completely by Mn2+, but the protease was enhanced by all of tested divalent metals. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase and protease were (pH 7, 50°C, pH 6–7, <50°C) and (pH 8–10, 40°C, pH 5–10, <50°C), respectively. SDS (2 mM) had stimulatory effect on TKU016 protease activity. The result demonstrates that TKU016 protease is SDS-resistant protease and probably has a rigid structure. Besides, TKU016 culture supernatant (2% SPP) incubated for 2 days has the highest antioxidant activity, the DPPH scavenging ability was about 76%. With this method, we have shown that shrimp shell wastes can be utilized and it’s effective in the production of enzymes, antioxidants, peptide and reducing sugar, facilitating its potential use in biological applications and functional foods.  相似文献   

19.
From the mycelia of Neurospora crassa (wild type No. 6068) multiple forms of a nuclease which had very close isoelectric points (pI = 9.6 (peak I), 9.4 (peak II)) were isolated by ampholine electrofocusing column chromatography (pH 8.5 ~ 10). The nuclease was about 300-fold purified from the crude extract. The two fractions of Peak I, II were indistinguishable in their enzymatic properties and were considered as manifestation of the same enzyme with minor physicochemical differences. The molecular weight was around 41,000 as estimated by the gel filtration method. The enzyme could hydrolyze both DNA and RNA in the order of heat-denatured DNA > native DNA DNA ≧ RNA. RNA competitively inhibited DNA degradation with this enzyme. The enzyme was therefore regarded as a nuclease. The pH optimum was around pH 6.5 toward native DNA, pH 6.7 toward heat-denatured DNA and pH 7.9 toward RNA. The temperature optimum was around 40°C toward these substrates and most of the activities were lost by heating at 55°C for 15 min. The enzyme required Mg2+ for action toward heat-denatured DNA and Mg2+, Mn2+ or Co2+ toward native DNA. In the presence of EDTA, the activities toward both types of DNA were lost and recovered by addition of the respective activating metallic ions. p-CMB inhibited this nuclease, but β-mercapto-ethanol and glutathione had no effect. Polyamìnes showed no activation of the nuclease for DNA degradation.  相似文献   

20.
Protocatechuate 3,4-dioxygenase was isolated from a gram-positive bacterium, Nocardia erythropolis, the enzyme participates in the phthalate ester metabolism in the bacterium. Cultural conditions for production of the enzyme, the purification procedure, and some properties of the enzyme were studied. A bouillon (beef) medium was the most effective among those tested for cell growth and enzyme formation. The effect was due to the ring closure type of creatine compounds. Protocatechuate 3,4-dioxygenase was purified from the cell-free extract ca. 1,400-fold and it gave a single band on polyacrylamide gel electrophoresis. The molecular weight was estimated to be ca. 150,000. The optimal pH and temperature were pH 8.0 and 40°C, respectively. The enzyme was stable in a pH range from 7.6 to 8.6 and below 42°C. The enzyme was inhibited by several metals such as Pb2+ , Cd2+ and Hg2+ . The enzyme was active on a wide range of o-dihydroxyphenyl compounds, in contrast to the high specificity of similar enzymes from gram-negative bacteria (Pseudomonas). The enzyme had a broad absorption band in the visible region with a peak around 450 nm, suggesting the presence of non-heme ion(s) bound to the enzyme as a cofactor. The spectrum changed markedly upon addition of the substrate, possibly showing the formation of an enzyme-substrate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号