首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although a number of studies have focused on the higher ethyl pyruvate antioxidative activity than its sodium salt under various stress conditions, and the greater protective properties of the ester form have been suggested as the effect of better cell membrane penetration, the molecular mechanism has remained unclear. The aim of the present study was therefore to compare the antioxidative activities of sodium and ethyl pyruvate under in vitro conditions by using a liver homogenate as the model for cell membrane transport deletion. The potential effect of ethanol was also evaluated, and hypochlorous acid was used as an oxidant. Our data indicate the concentration-dependent scavenging potency of both sodium and ethyl pyruvate, with the ester having higher activity. This effect was not related to the presence of ethanol. Better protection of the liver homogenate by ethyl pyruvate was also apparent, despite the fact that cell membrane transport was omitted.  相似文献   

2.
Alcoholic patients and experimental animals exposed to ethanol display biochemical signs of oxidative damage, suggesting a possible role of free radicals in causing some of the toxic effects of alcohol. The ester derivative, ethyl pyruvate (EP) is stable in solution and should function as an antioxidant and energy precursor. In the present study, the effect of ethanol intake on plasma membrane fluidity, lipid oxidation and antioxidant enzyme activities (GPx, CAT and SOD) were first evaluated. Secondly, the consequences of ethyl pyruvate treatment on the physico-chemical properties of erythrocyte plasma membranes were investigated. The results obtained demonstrate that ethanol induces an increase in lipid peroxidation, a reduction of GPx activity and fluidity in the hydrophilic-hydrophobic region of the bilayer, moreover an increase of fluidity in hydrophobic part of the plasma membrane was measured. When rats were treated with ethyl pyruvate a partially protective effect can be observed for the hydrophilic-hydrophobic region tested by Laurdan, while EP cannot restore the DPH anisotropy values to the control values. In summary, our data indicate that treatment with EP can only partially reduce ethanol plasma membrane perturbation. Since this study shows an ethyl pyruvate dose-dependent effect, it is important to consider the amount of EP required to maintain the right level of membrane fluidity and polarity. These results could be interesting in order to investigate if EP, due to its radical scavenging effect, can prevent oxidative damage induced by ethanol intake and can protect against injure related with ethanol intake.  相似文献   

3.
Alcohol metabolism in the human brain has been characterized as essentially nonoxidative in nature, with the esterification of ethanol with fatty acids via fatty acid ethyl ester synthase. This pathway of ethanol metabolism is related to end organ damage in the brain but the neural cell type expressing FAEES has not been identified. In this study human and rodent neuroblastoma and glioma cell lines are assayed for fatty acid ethyl ester synthase activity. Cells with neuronal properties demonstrated higher activity than glioma cell lines. We confirmed the presence of the mRNA for one type of synthase, fatty acid ethyl ester synthase-III in three neuronal cell lines--N1E115 cells, PC12 cells, and SK-N-MC cells. These results support the hypothesis that FAEES activity is expressed chiefly in cells with neuronal properties and suggest that non-oxidative ethanol metabolism is potentially related to the toxic effect of ethanol on the human brain.  相似文献   

4.
The production of ethanol, acetate ion and ethyl acetate from glucose by the yeast Candida pseudotropicalis NCYC 143 was investigated under aerobic and anaerobic growth conditions. Acetate and ethyl acetate only accumulated under aerobic conditions, whereas production of the alcohol was favoured by anaerobic conditions. Ester production during aerobic growth was enhanced substantially by growth in iron-deficient media. Possible conditions for optimising ester production from ethanol in dilute product streams were characterised.  相似文献   

5.
The specific ethanol productivity with Saccharomyces cerevisiae grown aerobicly in a chemostat was found to be highly dependent on the ratio of intracellular to extracellular potassium concentration through variations in the energy consumption used for maintenance of the concentration gradient of potassium across the cell membrane. The specific ethanol productivity progressively rose from 0 to 20 mmol h(-1) g(-1) cell dry matter at a growth rate of 0.17 h(-1) when the ratio of intracellular to extracellular potassium concentration was increased from 10 to 80. The ethanol production under potassium limited growth conditions was caused neither by a reduction in the specific respiratory activity nor by variations in the potassium content in cell dry matter. Results which strongly that ethanol production under potassium limited growth conditions is brought about by changes in the ratio of pyruvate oxidase to pyruvate decarboxylase activity through changes in the intracellular pyruvate concentration are presented.  相似文献   

6.
It is shown that thiamine administration to rats (250 micrograms per 100 g of mass) who were given high-carbohydrate diet (lipogenesis intensification) after fasting inhibits an increase in the pyruvate dehydrogenase activity in the liver homogenate and mitochondria usual under these conditions. This is observed when determining total activity of the pyruvate dehydrogenase complex and activity of its first component--pyruvate dehydrogenase estimated from the ferricyanide reduction and [1-14C] CO2 formation from [1-14C] pyruvate. Fasting animals and animals whom thiamine was administered against a background of lipogenesis intensification revealed a higher ability of the liver tissue to synthesize acetoin as compared with the control group and animals with the intensified lipogenesis without thiamine administration.  相似文献   

7.
Summary Ion-sensitive glass microelectrodes, conventional microelectrodes and isotope flux measurements were employed inNecturus gallbladder epithelium to study intracellular sodium activity, [Na] i , electrical parameters of epithelial cells, and properties of active sodium transport. Mean control values were: [Na] i : 9.2 to 12.1mm; transepithelial potential difference, ms : –1.5 mV (lumen negative); basolateral cell membrane potential, es : –62 mV (cell interior negative); sodium conductance of the luminal cell membrane,g Na: 12 mho cm–2; active transcellular sodium flux, 88 to 101 pmol cm–2 sec–1 (estimated as instantaneous short-circuit current). Replacement of luminal Na by K led to a decrease of the intracellular sodium activity at a rate commensurate to the rate of active sodium extrusion across the basolateral cell membrane. Mucosal application of amphotericin B resulted in an increase of the luminal membrane conductance, a rise of intracellular sodium activity, and an increase of short-circuit current and unidirectional mucosa to serosa sodium flux. Conclusions: (i) sodium transport across the basolateral membrane can proceed against a steeper chemical potential difference at a higher rate than encountered under control conditions; (ii) the luminal Na-conductance is too low to accommodate sodium influx at the rate of active basolateral sodium extrusion, suggesting involvement of an electrically silent luminal transport mechanism; (iii) sodium entry across the luminal membrane is the rate-limiting step of transcellular sodium transport and active sodium extrusion across the basolateral cell membrane is not saturated under control conditions.  相似文献   

8.
十四种化合物的抗氧化活性   总被引:3,自引:0,他引:3  
本文以抑制硫代巴比妥酸反应物的生成为指标,测定了十四种化合物的抗氧化活性,并估测了其中十一种化合物与-OH反应的动力学常数,发现它们的量效关系为:1.抗氧化活性与浓度成直线相关性,按其抗氧化活性由大到小排列顺序如下:N、N-二乙基硫代氨甲酸钠;4-羟基桂皮酸二乙胺基乙基醋盐酸盐;1-色氨酸;S,2(3-氨基丙基氨基)乙基硫代磷酸;S,2-氨基乙基异硫脲盐酸盐:dl-蛋氨酸;dl-组氨酸;乙醇:烟酰胺;柠檬酸钠;甘氨酸.2.抗坏血酸与1-半胱氨酸低浓度时促氧化,高浓度时抗氧化.3.还原性谷胱甘肽其抗氧化活性与浓度的关系成指数型.  相似文献   

9.
In the yeast Dipodascus magnusii, which is auxotrophic for thiamine and biotin, during cultivation on glucose with excessive thiamine concentration, pyruvate metabolism was shown to result in the synthesis of fermentation products, namely, ethanol and, to a lesser extent, lactate. Substantial synthesis of ethyl acetate was also observed under these conditions. Introduction of nicotinic acid (NA) into the medium resulted in time separation of ethanol and lactate production. It was shown that cultivation of the yeast under biotin deficiency resulted in nearly complete suppression of aerobic production of ethanol and cessation of ethyl acetate synthesis, whereas lactate synthesis was activated as early as in the first hours of cultivation. Upon introduction of NA under these conditions, lactate concentration sharply increased. These results show that the combination of thiamine and biotin with other vitamins can stimulate utilization of the pyruvate pool in yeasts towards formation of considerable amounts of lactate, which is typical only of cells of higher eukaryotes and bacteria.  相似文献   

10.
Human myocardial fatty acid ethyl ester synthase-III is a newly described acidic glutathione S-transferase that metabolizes both ethanol and carcinogens. Structure-function studies have not been performed relating these two distinct enzymatic activities. Since there are only two histidine residues in fatty acid ethyl ester synthase-III (His 72 and His 163), the role of each was examined by site-specific mutagenesis. Fatty acid ethyl ester synthase-III mutagenized at position 72 to contain either Gln, Pro or Ala had less than 5% of control glutathione S-transferase activity but retained fatty acid ethyl ester synthase activity under standard assay conditions. In contrast, substitution of histidine 163 with proline had no effect on glutathione S-transferase activity, but it slightly increased synthase activity. Thus, this study indicates that histidine plays a differential role in fatty acid ethyl ester synthase III depending on the nucleophilic substrate.  相似文献   

11.
In the yeast Dipodascus magnusii, which is auxotrophic for thiamine and biotin, during cultivation on glucose with excessive thiamine concentration, pyruvate metabolism was shown to result in the synthesis of fermentation products, namely, ethanol and, to a lesser extent, lactate. Substantial synthesis of ethyl acetate was also observed under these conditions. Introduction of nicotinic acid (NA) into the medium resulted in time separation of ethanol and lactate production. It was shown that cultivation of the yeast under biotin deficiency resulted in nearly complete suppression of aerobic production of ethanol and cessation of ethyl acetate synthesis, whereas lactate synthesis was activated as early as in the first hours of cultivation. Upon introduction of NA under these conditions, lactate concentration sharply increased. These results show that the combination of thiamine and biotin with other vitamins can stimulate utilization of the pyruvate pool in yeasts towards formation of considerable amounts of lactate, which is typical only of cells of higher eukaryotes and bacteria.  相似文献   

12.
The present study reports the improved enzymatic synthesis of ethyl valerate (green apple flavor) by esterification reaction of ethanol and valeric acid in heptane medium. Lipase from Thermomyces lanuginosus (TLL) was immobilized by physical adsorption on polyhydroxybutyrate (PHB) particles and used as a potential biocatalyst. The effect of certain parameters that influence the ester synthesis was evaluated by factorial design. The experimental conditions that maximized the synthesis of ethyl valerate were 30.5°C, 18% m/v of biocatalyst (TLL–PHB), absence of molecular sieves, agitation of 234?rpm, and 1,000?mM of each reactant (ethanol and valeric acid). Under these conditions, conversion percentage ≈92% after 105?min of reaction was observed. Soluble TLL was also used as biocatalyst and the highest conversion was of 82% after 120?min of reaction. Esterification reaction performed in a solvent-free system exhibited conversion of 13% after 45?min of reaction catalyzed by immobilized lipase, while the soluble lipase did not exhibit catalytic activity. The synthesis of the ester was confirmed by Fourier transform infrared spectroscopy and gas chromatography–mass spectrometry analyses. After six consecutive cycles of ethyl valerate synthesis, the prepared biocatalyst retained ≈86% of its original activity.  相似文献   

13.
Summary Production of economically-recoverable products from dilute sugar or ethanol is of practical importance. Conversion of glucose to ethyl acetate by Candida utilis was inhibited by FeCl3 supplementation as low as 10 uM. EDTA added at the onset of growth on glucose relieved such an inhibition and also caused faster and greater amounts of accumulation of the ester. Addition of EDTA during conversion of ethanol to ethyl acetate showed little effect. EDTA may affect cell permeability and/or oxidative metabolism. For continual ethyl acetate production iron limitation must be maintained during as well as before ethanol utilization.EDTA = Ethylenediaminetetraacetic acid.  相似文献   

14.
Emissions of acetaldehyde from tree leaves were investigated by proton‐transfer‐reaction mass spectrometry (PTR‐MS), a technique that allows simultaneous monitoring of different leaf volatiles, and confirmed by derivatization and high‐performance liquid chromatography analysis. Bursts of acetaldehyde were released by sycamore, aspen, cottonwood and maple leaves following light–dark transitions; isoprene emission served as a measure of chloroplastic processes. Acetaldehyde bursts were not accompanied by ethanol, but exposure of leaves to inhibitors of pyruvate transport or respiration, or anoxia, led to much larger releases of acetaldehyde, accompanied by ethanol under anoxic conditions. These same leaves have an oxidative pathway for ethanol present in the transpiration stream, resulting in acetaldehyde emissions that are inhibited in vivo by 4‐methylpyrazole, an alcohol dehydrogenase (Adh) inhibitor. Labelling of leaf volatiles with 13CO2 suggested that the pools of cytosolic pyruvate, the proposed precursor of acetaldehyde bursts, were derived from both recent photosynthesis and cytosolic carbon sources. We hypothesize that releases of acetaldehyde during light–dark transitions result from a pyruvate overflow mechanism controlled by cytosolic pyruvate levels and pyruvate decarboxylase activity. These results suggest that leaves of woody plants contribute reactive acetaldehyde to the atmosphere under different conditions: (1) metabolic states that promote the accumulation of cytosolic pyruvate, triggering the pyruvate decarboxylase reaction; and (2) leaf ethanol oxidation resulting from ethanol transported from anoxic tissues.  相似文献   

15.
S M Cohen 《Biochemistry》1987,26(2):573-580
The effects of insulin in vitro on perfused liver from streptozotocin-diabetic rats and their untreated littermates during gluconeogenesis from either [3-13C]alanine + ethanol or [2-13C]pyruvate + NH4Cl + ethanol were studied by 13C NMR. A 13C NMR determination of the rate of pyruvate kinase flux under steady-state conditions of active gluconeogenesis was developed; this assay includes a check on the reuse of recycled pyruvate. The preparations studied provided gradations of pyruvate kinase flux within the confines of the assay's requirement of active gluconeogenesis. By this determination, the rate of pyruvate kinase flux was 0.74 +/- 0.04 of the gluconeogenic rate in liver from 24-h-fasted controls; in liver from 12-h-fasted controls, relative pyruvate kinase flux increased to 1.0 +/- 0.2. In diabetic liver, this flux was undetectable by our NMR method. Insulin's hepatic influence in vitro was greatest in the streptozotocin model of type 1 diabetes: upon treatment of diabetic liver with 7 nM insulin in vitro, a partial reversal of many of the differences noted between diabetic and control liver was demonstrated by 13C NMR. A major effect of insulin in vitro upon diabetic liver was the induction of a large increase in the rate of pyruvate kinase flux, bringing relative and absolute fluxes up to the levels measured in 24-h-fasted controls. By way of comparison, the effects of ischemia on diabetic liver were studied by 13C NMR to test whether changes in allosteric effectors under these conditions could also increase pyruvate kinase flux. A large increase in this activity was demonstrated in ischemic diabetic liver.  相似文献   

16.
Summary Thein vitro effect of ethanol on membrane structure and transport properties was studied in isolated renal brush border membrane vesicles.31P-NMR studies showed a dose-dependent increase in the quantity of an isotropic, possibly inverted-micellar component of the renal brush-border membrane as a result of treatment with ethanol. Such structures have been shown to be instrumental in the translocation of material across membrane bilayers. A23Na-NMR study of Na+ exchange in artificial phosphatidylcholine liposomes indicated that ethanol (0.1%) was capable of rending the otherwise inert vesicles permeable to sodium, supporting the idea that ethanol may exert its action via a direct effect on the structure of the phospholipid bilayer. In the isolated renal brush-border membrane vesicles, like in the artificial liposomes, amiloride-insensitive pathways of Na+ transport were shown to be markedly activated by ethanol. These results were consistent with the inhibitory effect ethanol had on Na+ gradient-dependent transport systems such as the Na+ gradient-dependentd-glucose transport and Na+/H+ exchange. In conclusion, our results indicate that ethanol exerts its effect on the renal brush-border membrane by causing a structural change in the phospholipid bilayer which activates sodium intake. The inhibitory effect of ethanol on glucose uptake and Na+/H+ exchange is secondary, as a result of the dissipation of the energy-producing Na+ gradient.  相似文献   

17.
Ethanol metabolism was studied in isolated hepatocytes of fed and fasted guinea pigs. Alcohol dehydrogenase (EC 1.1.1.1) activities of fed or fasted liver cells were 2.04 and 1.88 μmol/g cells/min, respectively. Under a variety of in vitro conditions, alcohol dehydrogenase operates in fed hepatocytes at 34–74% and in fasted liver cells at 23–61% of its maximum velocity, respectively. Hepatocytes of fed animals, incubated in Krebs-Ringer bicarbonate buffer, oxidized ethanol at an average rate of 0.69 μmol/g wet weight cells/min, whereas cells of 48-h fasted animals consumed only 0.44 μmol/g/min under identical conditions. Various substrates and metabolites of intermediary metabolism significantly enhanced ethanol oxidation in fed liver cells. Maximum stimulatory effects were achieved with alanine (+138%) and pyruvate (+102%), followed in decreasing order by propionate, lactate, fructose, dihydroxyacetone, and galactose. In contrast to substrate couples such as lactate/pyruvate and glycerol/dihydroxyacetone, sorbitol with or without fructose significantly inhibited ethanol oxidation. The addition of hydrogen shuttle components such as malate, aspartate, or glutamate to fasted hepatocytes resulted in significantly higher stimulation of ethanol uptake than in fed hepatocytes. Also, the degree of inhibition of shuttle activity by n-butylmalonate was more pronounced in fasted liver cells (77% inhibition) than in fed cells (59% inhibition). These data as well as oxygen kinetic studies in intact guinea pig hepatocytes utilizing uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, dinitrophenol), electron-transport inhibitors (rotenone, antimycin), and malate-aspartate shuttle inhibitors (aminooxyacetate, n-butylmalonate) strongly suggested that the malate-aspartate shuttle is the predominant hydrogen transport system during ethanol oxidation in guinea pig liver.Comparison of the alcohol dehydrogenase-inhibitors 4-methylpyrazole and pyrazole on ethanol oxidation demonstrated that the alcohol dehydrogenase system is quantitatively the most important alcohol-metabolizing pathway in guinea pig liver. Supporting this conclusion, it was found that the H2O2-forming substrate glycolate slightly increased ethanol oxidation in liver cells of control animals (+26%), but prior inhibition of catalase by 3-amino-1,2,4-triazole resulted in a significant increase (+25%) instead of a decrease in alcohol oxidation. This finding does not support a quantitatively important role of peroxidatic oxidation of ethanol by catalase in liver.Cytosolic NADNADH ratios were greatly shifted toward reduction during ethanol oxidation. These reductive shifts were even more pronounced when cells were incubated in the presence of fatty acids (octanoate, oleate) plus ethanol. Inhibitor studies with 4-methylpyrazole demonstrated that the decrease of the cytosolic NADNADH ratio during fatty acid oxidation was due to an inhibition of hydrogen transport from cytosol to mitochondria and not the result of transfer of hydrogen, generated by fatty acid oxidation, from mitochondria to cytosol. Lactate plus pyruvate formation was slightly inhibited by ethanol in fed hepatocytes but greatly accelerated in fasted cells; this latter effect was mostly the result of increased lactate formation. Such regulation may represent a hepatic mechanism of alcoholic lactic acidosis as observed in human alcoholics. The ethanol-induced decrease of the mitochondrial NADNADH ratio was prevented by addition of 4-methylpyrazole. Endogenous ketogenesis was greatly increased (+80%) by ethanol in fed liver cells. This effect of ethanol was blunted in the presence of glucose. Propionate, by competing with fatty acid oxidation, was strongly antiketogenic. This effect was alleviated by ethanol. In 48-h fasted hepatocytes, endogenous ketogenesis was enhanced by 84%. Although ethanol did not further stimulate endogenous ketogenesis under these conditions, alcohol significantly increased ketogenesis in the presence of octanoate or oleate. This stimulatory effect of ethanol was almost completely prevented by 4-methylpyrazole. These findings demonstrate that the syndrome of alcoholic ketoacidosis may be due, at least partially, to the additional stimulation of ketogenesis by or from ethanol during fatty acid oxidation in the fasting state.  相似文献   

18.
Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae with respect to ethanol formation under aerobic conditions could be caused by differences in the regulation of this enzyme activity. We have identified and cloned three genes encoding functional pyruvate decarboxylase enzymes ( PDC genes) from the type strain of S. kluyveri (Sk-PDC11, Sk-PDC12 and Sk-PDC13). The regulation of pyruvate decarboxylase in S. kluyveri was studied by measuring the total level of Sk-PDC mRNA and the overall enzyme activity under various growth conditions. It was found that the level of Sk-PDC mRNA was enhanced by glucose and oxygen limitation, and that the level of enzyme activity was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae and S. kluyveri each have three PDC genes, these have apparently arisen by independent duplications and specializations in each of the two yeast lineages.Communicated by C. P. Hollenberg  相似文献   

19.
Glucagon treatment of rats allowed the isolation of liver mitochondria with enhanced rates of pyruvate metabolism measured in either sucrose or KCl media. No change in the activity of the pyruvate carrier itself was apparent, but under metabolizing conditions, use of the inhibitor of pyruvate transport, alpha-cyano-4-hydroxycinnamate, demonstrated that pyruvate transport limited the rate of pyruvate metabolism. The maximum rate of transport under metabolizing conditions was enhanced by glucagon treatment. Problems involved in measuring the transmembrane pH gradient under metabolizing conditions are discussed and a variety of techniques are used to estimate the matrix pH. From the distribution of methylamine, ammonia and D-lactate and the Ki for inhibition by alpha-cyano-4-hydroxycinnamate it is concluded that the matrix is more acid than the medium and that the pH of the matrix rises after glucagon treatment. The increase in matrix pH stimulates pyruvate transport. The membrane potential, ATP concentration and O2 uptake were also increased under metabolizing conditions in glucagon-treated mitochondria. These changes were correlated with a stimulation of the respiratory chain which can be observed in uncoupled mitochondria [Yamazaki (1975) J. Biol. Chem. 250, 7924--7930]. The mitochondrial Mg2+ content (mean +/- S.E.M.) was increased from 38.8 +/- 1.2 (n = 26) to 47.5 +/- 2.0 (n = 26) ng-atoms/mg by glucagon and the K+ content from 126.7 +/- 10.3 (n = 19) ng-atoms/mg. This may represent a change in membrane potential induced by glucagon in vivo. The physiological significance of these results in the control of gluconeogenesis is discussed.  相似文献   

20.
Summary AnEscherichia coli strain containing a recombinant plasmid encoding the pyruvate decarboxylase and alcohol dehydrogenase genes fromZymomonas mobilis metabolized glucose and xylose to near theoretical yields of ethanol. Enzyme activity measurements indicate high expression levels of both plasmid-encodedZymomonas proteins in the recombinantE. coli. The expression inE. coli is under the control of a promoter in theZymomonas sequence upstream of the pyruvate decarboxylase gene. The maximum ethanol level, using 4% glucose as substrate, was 1.8% (w/v) in anaerobic conditions. In aerobic conditions the natural repression ofE. coli alcohol dehydrogenase results in less ethanol production from clones expressing onlyZymomonas pyruvate decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号