首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that amino acid esters added in a protein hydrolysate are covalently incorporated during the plastein reaction. As its modification, a novel simplified process was developed which permitted incorporation of l-methionine directly into soy protein during treatment with papain. This process is characterized by its requirement for a very high substrate (protein) concentration and an alkaline pH condition. Racemic dl-methionine ethyl ester could be used to incorporate the l-isomer only. The amount of l-methionine incorporated varied depending on the amount of formulation of l-methionine ethyl ester; it was easily feasible to obtain final products with almost expected methionine contents. From an economic point of view, defatted soy flour was used as starting material, with a satisfactory result that the methionine level was enhanced in a large measure.  相似文献   

2.
The accumulation of S-adenosylmethionine in adenine-requiring yeast cells grown in a culture medium containing dl-, l-, or d-methionine was much larger than that in cells grown in a methionine-free medium. The accumulation of S-adenosyl-d-methionine in the cells was significantly lower than that of S-adenosyl-l-methionine. When yeast cells containing a large amount of S-adenosyl-l-methionine were incubated in an adenine-free medium, adenosylmethionine was degraded, but poor and insignificant growth was observed indicating the meager nature of this compound as an adenine source. No degradation of accumulated S-adenosyl-d-methionine was detected. Isotopic experiment revealed that S-adenosyl-l-methionine in the yeast cells turned over at a considerable rate when the medium contained both adenine and l-methionine. Most of the l-methionine assimilated appears to be metabolized via S-adenosyl-l-methionine.  相似文献   

3.
Ethionine-resistant mutants derived from Corynebacterium glutamicum KY 9276 (Thr?) were found to accumulate l-methionine in culture media. One of the mutants, ER-107-4, which produced 250 μg/ml of l-methionine was subjected to further mutagenesis to obtain better l-methionine producers. l-Methionine production increased stepwise by successive endowing such markers as selenomethionine, 1,2,4-triazole, trifluoromethionine and methionine hydroxamate resistance. Thus, a mutant multi-resistant to ethionine, selenomethionine and methionine hydroxamate, ESLMR-724, produced 2 mg/ml of l-methionine in a medium containing 10% glucose.

Increase of l-methionine production was accompanied by increased levels and reduced repressibility of methionine-forming enzymes. The levels of methionine enzymes in ESLMR-724 increased to 2.5~4.2 fold of those in KY9276, In addition, homoserine-O-trans-acetylase and cystathionine γ-synthase which were strongly repressed by l-methionine in KY 9276 were stimulated by exogenous l-methionine in ESLMR-724. Implications of these results were discussed in relation to the productivity of l-methionine and the regulation of l-methionine biosynthesis.  相似文献   

4.
l-Threonine producing α-amino-β-hydroxyvaleric acid resistant mutants were derived from E. coli K-12 with 3 x 10-5 frequency. One of mutants, strain β-101, accummulated maximum amount of l-threonine (1. 9 g/liter) in medium. Among isoleucine, methionine and lysine auxotrophs derived from E. coli K-12, only methionine auxotrophs produced l-threonine. In contrast, among isoleucine, methionine and lysine auxotrophs derived from β-101, l-threonine accumulation was generally enhanced in isoleucine auxotrophs. One of isoleucine auxotrophs, strain βI-67, produced maximum amount of l-threonine (4. 7 g/liter). Methionine auxotroph, βM-7, derived from β-101 produced 3.8 g/liter, and βIM-4, methionine auxotroph derived from β1-67, produced 6.1 g/liter, when it was cultured in 3% glucose medium supplemented with 100 μg/ml of l-isoleucine and l-methionine, respectively. These l-threonine productivities of E. coli mutants were discussed with respect to the regulatory mechanisms of threonine biosynthesis. A favourable fermentation medium for l-threonine production by E. coli mutants was established by using strain βM-4.  相似文献   

5.
Certain Streptomyces strains were found to accumulate an unknown substance in culture broth when the microorganisms were grown in the medium containing dl-methionine. The substance was isolated from the culture broth as hydrochloride and was identified as 3-methylthiopropylamine (MTPA), decarboxylated product of methionine, from its melting point, chemical composition, infrared spectrum, and other properties. Cultural conditions for MTPA formation in Streptomyces sp. K 37 were investigated. The yield of MTPA from l-methionine reached about 90% with a culture medium containing corn steep liquor. Namely, 6.47 mg of MTPA per millilitre of culture broth was produced from 10 mg of l-methionine per millilitre of the growth medium. The transforming activity was found in the cells of the early culture period. MTPA-producing activity was induced by l- methionine in the medium. d-Methionine was not utilized as a substrate of the reaction with intact cells. Optimum pH for the reaction appeared to be 6.0~8.0.  相似文献   

6.
Washed cells of facultative methylotrophs which have the serine pathway showed high activities for l-methionine formation from dl-homocysteine, in the presence of methanol as methyl donor. Strain FM 518, isolated from soil and identified as a bacterium belonging to the genus Pseudomonas, showed the highest activity for l-methionine formation and was used as the parental strain for breeding the l-methionine-producing mutants. An ethionine-resistant mutant, FE 244, derived from strain FM 518, accumulated 0.8 mg/ml l-methionine in a methanol-medium under optimum conditions.  相似文献   

7.
When 8% casein basal diet was supplemented with 0.3% dl-methionine or 0.3% dl-methionine plus 0.36% dl- or 0.18% l-threonine, the changes in urinary excretions of urea and allantoin were examined in weanling male rats of Wistar strain with the observations on the body weight gain and % nitrogen retention. Carbohydrate sources used were sucrose or an equimolar mixture of glucose and fructose (G-F) in place of pregelatinized starch used in the previous experiments.

In contrast to the previous results, differences in nitrogen utilization, expressed in term of growth rate or % nitrogen retention, became significant by the addition of 0.3% methionine to the basal diet and it was further increased by the simultaneous supplementation with 0.36% dl- or 0.18% l-threonine.

Urea excretion was the main variable in total urinary nitrogen output to cause the significant difference in % nitrogen retention between the groups. As postulated in the previous paper, thus, the use of sucrose or G-F mixture considerably exaggerated these group-differences in such various indices as body weight gain and % nitrogen retention, and this trend became more distinct in the urea and allantoin excretions.

Liver arginase activity inversely changed with urea excretion, but proportionately to the qualitative improvement of dietary protein by the addition of methionine or methionine plus threonine. Changes in liver glutamic dehydrogenase activity were also parallel with the improvement of dietary protein quality.  相似文献   

8.
Cysteine mercaptals and mercaptoles were prepared by the reactions of l-cystine with formaldehyde, acetaldehyde, n-butyraldehyde, benzaldehyde, furfural, pyruvic acid and levulinic acid in 6 n hydrochloric or sulfuric acid. Hydrogen sulfide released from cysteine mercaptals and mercaptoles in heated aqueous solutions (oil bath: 120°C) was determined. Although a small amount of hydrogen sulfide was liberated from l-cystine on one hour heating, its amount increased suddenly after three hours. Among these compounds l-cystine mercaptal of furfural was most unstable and a large amount of hydrogen sulfide was produced.  相似文献   

9.
Pseudomonas melanogenum ATCC 17806 required methionine, cysteine, cystine, cystathionine, homocysteine or homocystine for growth. However, the addition of these amino acids decreased remarkably l-DOPA (3,4-dihydroxyphenyl-l-alanine) production by the bacterium. l-DOPA production by the bacterium was further affected by the amount of the substrate, the method of its addition and by the addition of antioxidants, as was the case with Vibrio tyrosinaticus.

Under suitable conditions about 8 mg/ml of l-DOPA were produced from 8.6 mg/ml of l-tyrosine.  相似文献   

10.
Two amino acid derivative antibiotics, hadacidin and duazomycin A, were isolated as inhibitors of de novo starch synthesis in excised leaf segments from culture filtrates of Penicillium No. 467 and Streptomyces No. 317, respectively. In addition, azaserine, 6-diazo-5-oxo-l-norleucine (DON), and trifluoro-dl-methionine were found to be potent inhibitors among about 70 kinds of commercial amino acid derivatives. These amino acid derivatives inhibited de novo starch synthesis at concentrations ranging from 1 to 10ppm but did not inhibit photosynthetic oxygen evolution at a concentration of 100ppm. The inhibition caused by these diazo compounds was reversed by a supplement of l-glutamine. With hadacidin and trifluoro-dl-methionine, however, the reversal was not observed upon the addition of l-aspartic acid or l-methionine, respectively. Among these active compounds, hadacidin was herbicidal against lettuce and barnyard millet by foliar treatment at a concentration of more than 1000 ppm.  相似文献   

11.
Using a minimal medium containing a methionine analog together with a small amount of S-adenosylmethionine (SAM), many SAM requiring mutants which responded only to SAM and not to methionine, S-adenosylhomocysteine, or homocysteine were efficiently isolated from Corynebacterium glutamicum TLD-140 after mutagenesis. Among them, SAM-14 and SAM-19 selected from selenomethionine resistant mutants were subjected to further investigation. Both mutants were unable to grow in a minimal medium and had no detectable activity of SAM synthetase. Both mutants acquired higher resistance to methionine hydroxamate and ethionine as well as to selenomethionine than TLD-140 and produced l-methionine in a medium.

Homoserine-O-transacetylase in SAM-19 was subject to full repression by the addition of excess SAM to the growth medium and was not repressed under SAM limitation, whereas addition of excess l-methionine under SAM limitation caused a partial repression of the enzyme. SAM synthetase as well as l-methionine biosynthetic enzymes in a methionine auxotroph of C. glutamicum was repressed by the addition of l-methionine to the growth medium.

These results suggest that SAM is implicated in the repression of l-methionine synthesizing enzymes in C. glutamicum.  相似文献   

12.
l-Threonine production by strain BB-69, which was derived from Brevibacterium flavum No. 2247 as a α-amino-β-hydroxyvaleric acid resistant mutant and produced about 12 g/liter of l-threonine, was reduced by the addition of l-lysine or l-methionine in the culture medium. Many of lysine auxotrophs but not methionine auxotrophs derived from strain B–2, which produced about 7 g/liter of l-threonine, produced more l-threonine than the parental strain. Except only one methionine auxotroph (BBM–21), none of lysine and methionine auxotrophs derived from BB–69 produced more l-threonine than the parental strain. Homoserine dehydrogenase of crude extract from strain B–2 was inhibited by l-threonine more strongly than that from BB–69. Strain BBM–21, a methionine auxotroph derived from BB–69, produced about 18 g/liter of l-threonine, 50% more than BB–69, while accumulation of homoserine decreased remarkably as compared with BB–69. l-Threonine production by BBM–21 was increased by the addition of l-homoserine, a precursor of l-threonine, while that by BB–69 was not. No difference was found among BBM–21, BB–69 and No. 2247 in the degree of inhibition of homoserine kinase by l-threonine. l-Threonine production by revertants of BBM–21, that is, mutants which could grow without methionine, were all lower than that of BBM–21. Correlation between l-threonine production and methionine or lysine auxotrophy was discussed.  相似文献   

13.
The excellent l-leucine producing mutant No. 218, derived from a biotin requiring glutamic acid producing strain, is methionine and isoleucine auxotrophic. A suboptimum growth condition made by adding a limiting amount of isoleucine was necessary for the maximum production of l-leucine. On the other hand, methionine was indifferent to the productivity if sufficiently supplied for growth.

Biotin of more than 50 μg/liter caused the accumulation of l-leucine; less than 50 μg/liter, however, gave a drastic change in accumulation pattern from l-leucine to l-glutamic acid. Strain No. 218 produced 28 mg/ml of l-leucine after 72 hr cultivation when 13 % glucose was supplied as a carbon source, thus giving the yield of 21.6%.

Effects on l-leucine production of concentrations of inorganic salts, pH, temperature and aeration were also investigated.  相似文献   

14.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

15.
The present investigation is concerned with l-glutamic acid production in the presence of pyrrolidone carboxylic acid and glucose in Bacillus megaterium st. 6126. This strain does not grow on dl-pyrrolidone carboxylic acid (dl-PCA)1) as the sole source of carbon and nitrogen. The optimal concentration of yeast extract required for the maximal production of l-glutamic acid was 0.005% under the conditions used. As the yeast extract concentration was increased, growth increased proportionally; but the l-glutamic acid production did not exceed the control’s to which glucose and ammonium chloride had been added. l-Glutamic acid produced by both growing cultures and resting cells was derived from glucose and ammonium salt of dl-PCA. Isotope experiments suggested that the l-glutamic acid produced was partially derived from ammonium salt of dl-PCA in the growing culture which had been supplemented with d-glucose-U-14C or dl-PCA-1-14C and that ammonium salt of dl-PCA was consumed as the source of nitrogen and carbon for l-glutamic acid.  相似文献   

16.
Bacteria which can hydrolyze dl-5-indolylmethylhydantoin to l-tryptophan were isolated from various soils. The dl-5-indolylmethylhydantoin-hydrolyzing enzymes were found to be inducible and intracellular. With intact cells, 50 mg/ml as wet base, of newly isolated bacterial strain T-523, 10 mg/ml of dl-5-indolylmethylhydantoin dissapeared and 7.4 mg/ml of l-tryptophan in a molar yield of 82% was produced after 35 hr incubation. Tryptophan produced was confirmed to be l-form regardless of the stereoisomer of the substrates used. A mechanism of asymmetric hydrolysis of dl -5-indolyImethylhydantoin was discussed.  相似文献   

17.
dl-Threonine and dl-allothreonine showed a protective effect on various bacterial cells in the process of freeze-drying whereas l- and d-forms of them did not, probably owing to the difference in the physicochemical characteristics between l- (or d-) form and dl-form of the compounds in question. There was no difference in the protective activity between the optically active and inactive forms in the cases of serine, proline, tartaric acid and pyrrolidonecaboxylic acid.  相似文献   

18.
The present paper is concerned with the availability of the acyl derivatives of lysine for the growth of young rats in the course of studying the enzymatic resolution of dl-lysine with mold acylase. The enzymatic resolution of dl-lysine to optically-active l and d-isomers was carried out in either of the following two ways, namely, the asymmetric hydrolysis of diacetyl-dl-lysine or that of ε-benzoyl-α-acetyl-dl-lysine.

The oral administration of ε-acetyl-l-lysine to rats fed on the lysine-deficient diet supported the growth of young rats at a rate approximately two-thirds of that observed when l-lysine was supplied. ε-Benzoyl-l-lysine proved to be quite ineffective while diacetyl lysine showed a slight but insignificant increase in body weight.  相似文献   

19.
Aspergillus tamani accumulated about 20 μmoles of S-adenosylmethionine (SAM) in 1 g of dry cells when cultured secondarily in a medium containing more than 10 mm of l- methionine. The accumulation was not so high when l-methionine was replaced by d- methionine. Addition of nucleic acid-related substances was not effective for the accumulation. Addition of d, l-ethionine in place of methionine caused accumulation of S-adenosylethionine (SAE) in place of SAM. Among 100 strains of molds tested, a number of strains belonging to the genera Penicillium, Aspergillus, Rhizopus and Mucor could accumulate SAM in their mycelia. Especially Mucor jansseni had the highest ability; it accumulated 45 μmoles of SAM in 1 g of dry cells.  相似文献   

20.
The enzymatic procedures for the resolution of dl-lysine such as asymmetric synthesis of acyl l-lysinc anilide and acyl dl-lysines have been studied. As a result, the procedure consisting in the enzymatic asymmetric hydrolysis of ε-benzoyl-α-acctyl-dl-lysine was found to be the most advantageous for the resolution of dl-lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号