首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A mercuric chloride-tolerant bacterium was isolated from activated sludge and the bacterium was identified as Pseudomonas oleovorans.The bacterium is tolerant up to 350 ppm Hg2+, 100 ppm Cd2+, 40 ppm cr6+, and 1000 ppm Cu2+. Observation by scanning electron microscope of cells growing with mercury shows a less rigid structure of the cell surface than in the case of controls, while observation by transmission electron microscope shows many electron-dense granules in the cytoplasm of cells growing with mercury. By chemical analysis, about 80% of mercury taken up by the cells was found in the cytoplasm, and about 20% in the cell envelope fraction, of the resting cells used. Mercury was found in the supernatant fluid, but not in the microsomal fraction.Further detailed experiments for mercury distribution in the cells show that it is concentrated in the nucleic acid fraction of the supernatant fluid. In the insoluble fraction, mercury was found mainly in the polyphosphate-polysaccharide, mucopeptide, and lipopolysaccharide-polysaccharide fractions. In the case of the growing cells used, about 20% of the mercury was found in the cytoplasm and 80% in the insoluble fraction.  相似文献   

2.
The microsomal fraction isolated from sea urchin H. pulcherrimus eggs has the ability to actively accumulate Ca2+ in the presence of ATP. The Ca2+ uptake was sustained by addition of oxalate and was apparently insensitive to sodium azide. The sequestered microsomal Ca was readily released by the divalent cation ionophore A23187. The microsomal fraction obtained from fertilized eggs accumulated Ca2+ about five times more quickly than did that from unfertilized eggs. The increased Ca2+ uptake by microsomal fraction obtained from fertilized eggs was due to an increase in the maximum velocity of Ca2+ uptake and there was no difference in Km for calcium between the two fractions.  相似文献   

3.
Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source.  相似文献   

4.
The uptake and assimilation of nitrate and ammonia have been studied in Zea mays. Nitrogen-starved maize roots are capable of accumulating a potential capacity for nitrogen uptake and assimilation. Reestablishment of nitrogen supply leads to intense uptake, reaching 154 % of the reference variant level after 24 hours when nitrate is supplied, and 121 % when ammonia is supplied. After 24 hours the insoluble nitrogen fraction accounts for 80, 54 and 55 % of the total taken up in the PK + NO3-, PK + NH4+ and NPK variants respectively.  相似文献   

5.
ATP promotes 45Ca uptake by the microsomal fraction from the longitudinal smooth muscle of guinea-pig ileum and this uptake is stimulated by oxalate. As the microsomal fraction is made up of various subcellular entities, we examined the localization of the Ca2+-transport activity by density gradient centrifugation, taking advantage of the selective effect of digitonin (at low concentration) on the density of plasmalemmal elements. When the 45Ca-uptake activity was measured in the absence of oxalate, its behavior in subfractionation experiments closely paralleled that of the plasmalemmal marker 5′-nucleotidase. In contrast, the additional Ca2+-transport activity elicited by oxalate behaved like NADH-cytochrome c reductase, a putative endoplasmic reticulum marker. The endoplasmic reticulum vesicles constituted only a small part of the membranes in the microsomal fraction, which explains that their Ca2+-storage capacity was not detectable in the absence of Ca2+-trapping agent. Low digitonin concentrations selectively increased the Ca2+ permeability of the plasmalemmal vesicles. The two Ca2+-transport activities were further differentiated by their distinct sensitivities to K+, vanadate and calmodulin. In this respect, the oxalte-insensitive and oxalate-stimulated Ca2+-transport systems resembled, respectively, the sarcolemmal and sarcoplasmic reticulum Ca2+ pumps in cardiac and skeletal muscle, in accordance with the subcellular locations established by density gradient centrifugation.  相似文献   

6.
ATP-dependent Ca2+ uptake distinct from that of the mitochondria is found in both plasma membrane and microsomal membranes of rat kidney. Activity attributed to these fractions is enhanced by ammonium oxalate and is apparently insensitive to NaN3. In contrast, rat kidney mitochondrial Ca2+ uptake is blocked by NaN3. The pH of optimal activity is significantly higher for the mitochondrial fraction. Microsomal membrane Ca2+ uptake differs from that of the plasma membrane. Microsomal membranes are four times as active as the plasma membrane at high (5 mM) ATP levels. Apparent Km values for Mg2+-ATP differ in the two preparations with a higher affinity for Mg2+-ATP found in the plasma membrane Ca2+ uptake activity of the plasma membrane preparation is readily inhibited by Na+. Sucrose gradient density fractionation indicates that the observed microsomal membrane Ca2+ pump activity is associated with membrane vesicles derived from the endoplasmic reticulum. Ca2+ pump activity of both plasma membrane and microsomal fraction is depressed din the adrenalectomized rat. This activity is not restored by a single natriuretic dose of aldosterone.  相似文献   

7.
The effect of inhibitors on the ribonuclease activity of soluble and microsomal fractions of bean leaves has been examined. The soluble ribonuclease activity could be completely inhibited by Zn2+, Cu2+, bentonite, and diethylpyrocarbonate, although these inhibitors had little effect on the microsomal ribonuclease activity. Ribonuclease activity in the soluble fraction was completely inhibited by guanosine 2′(3′)-monophosphate, which was the first nucleotide to accumulate on degradation of yeast RNA. Adenosine 2′(3′)-monophosphate, the first nucleotide to accumulate on degradation of yeast RNA by the microsomal preparations, completely inhibited the ribonuclease activity of the microsomal fraction.The ribonuclease activity of both enzyme preparations was completely inhibited by an analog of the transition state of the ribonuclease reaction, a complex of guanosine and vanadyl sulfate. Inclusion of this complex in homogenization media markedly increased the proportion of polysomes isolated from bean leaves.  相似文献   

8.
Heavy-metal chromium [Cr(VI)] is a ubiquitous environmental pollutant. Comparing with chemical reduction, microbiological reduction is considered to be a friendly and cheaper way to decrease the damage caused by chromate. A bacterial strain, CR-07, which is resistant to and capable of reducing chromate was isolated from a mud sample of iron ore and identified as a Microbacterium sp. The bacterium had a high degree of tolerance to chromate, and could grow in LB medium containing 4.08 mM of K2Cr2O7. It also had a degree of resistance to other heavy metals, e.g. Cd2+, Pb2+, Zn2+, Cu2+, Co2+, Hg2+ and Ag+. The bacterium could remove 1.02 mM of Cr(VI) from LB medium within 36 h of incubation. Chromate removal was achieved in the supernatant from the bacterial cultures, and corresponded to chromate reduction. The activity of chromate reduction by the bacterium was not related to enzymes or reducing sugars, while fluorometric assay suggested that glutathione, a chromate-reducing substance which was produced by the bacterium, was one of the factors that contributed to the reduction of Cr(VI).  相似文献   

9.
ATP promotes 45Ca uptake by the microsomal fraction from the longitudinal smooth muscle of guinea-pig ileum and this uptake is stimulated by oxalate. As the microsomal fraction is made up of various subcellular entities, we examined the localization of the Ca2+-transport activity by density gradient centrifugation, taking advantage of the selective effect of digitonin (at low concentration) on the density of plasmalemmal elements. When the 45Ca-uptake activity was measured in the absence of oxalate, its behavior in subfractionation experiments closely paralleled that of the plasmalemmal marker 5′-nucleotidase. In contrast, the additional Ca2+-transport activity elicited by oxalate behaved like NADH-cytochrome c reductase, a putative endoplasmic reticulum marker. The endoplasmic reticulum vesicles constituted only a small part of the membranes in the microsomal fraction, which explains that their Ca2+-storage capacity was not detectable in the absence of Ca2+-trapping agent. Low digitonin concentrations selectively increased the Ca2+ permeability of the plasmalemmal vesicles. The two Ca2+-transport activities were further differentiated by their distinct sensitivities to K+, vanadate and calmodulin. In this respect, the oxalte-insensitive and oxalate-stimulated Ca2+-transport systems resembled, respectively, the sarcolemmal and sarcoplasmic reticulum Ca2+ pumps in cardiac and skeletal muscle, in accordance with the subcellular locations established by density gradient centrifugation.  相似文献   

10.
一般认为, 酸性蛋白在控制矿物的形成和发展中发挥重要作用。因此, 在不溶性有机基质中鉴定酸性蛋白对于理解珊瑚中个体蛋白的功能是非常重要的一步。在短指多型软珊瑚(Sinularia polydactyla)的可溶性和不溶性基质层中分析蛋白组分表明, 在不溶性基质和可溶性基质层中天冬氨酸的含量分别是61%和29%。利用体外分析法发现, 基质蛋白诱导碳酸钙形成非晶态析出相先于其形成钙质的结晶态。利用X-射线衍射来鉴定骨片上结晶态的碳酸钙, 结果表明钙质的多晶态呈现强反射。傅利叶变换红外光谱分析表明珊瑚基质中富含天冬氨酸的蛋白和多醣的结构。在不溶性基质组分中用钙离子结合分析显示一个分子量为109 kD的蛋白质可以与形成骨片的钙离子结合, 这一过程对骨片形成非常重要。在对生物钙化过程中起重要作用的碳酸酐酶的分析中显示了此酶的新颖的活性。以上结果显示珊瑚中不溶性基质内的富含天冬氨酸的蛋白在生物矿化调控过程中起重要作用。  相似文献   

11.
SYNOPSIS. Acetate metabolism was studied in 2 strains of the green alga Pandorina morum. Both strains were capable of mixotrophic growth in the light, but only one strain was capable of heterotrophic growth in the dark. 14C-2-acetate uptake by both strains was studied in the light and dark, in the presence and absence of CO2 and 3(3,4-dichlorophenyl)-1,1-dimethylurea (10?5M). The distribution of radioactivity incorporated into the insoluble, aqueous and chloroform soluble fractions of the cells was determined. The strain incapable of heterotrophic growth in the dark was found to incorporate very little acetate in the dark, and its ability to incorporate acetate into the insoluble fraction was severely limited under all conditions. Incorporation into the aqueous and chloroform-soluble fractions in the light was similar in both strains. The reduced incorporation into the insoluble fraction was almost totally the result of limited incorporation of acetate into polysaccharides by the obligate phototrophic strain.  相似文献   

12.
Sphingomyelinase (SMase) activity was measured in Entamoeba histolytica particulate and soluble subcellular fractions. The effects on SMase of incubation time, total protein concentration, pH, and several divalent cations were determined. SMase-C and other unidentified esterase activity were detected in soluble and particulate fractions. SMase-C was 94.5-96.0% higher than the unidentified esterase activity. Soluble and insoluble SMase-C specific activities increased with protein dose and incubation time. Soluble and insoluble SMase-C activities were maximum at pH 7.5 and were dependent on Mg2+, Mn2+, or Co2+, and inhibited by Zn2+, Hg2+, Ca2+, and EDTA. SMase-C was active in the pH range of 3-10 and its maximum activity was at pH 7.5. The soluble and insoluble SMases have remarkably similar physicochemical properties, strongly suggesting that E. histolytica has just one isoform of neutral SMase-C that had not been described before and might be essential for E. histolytica metabolism or virulence.  相似文献   

13.
In an effort to determine the subcellular localization of sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) in the pseudobranch of the pinfish Lagodon rhomboides, this tissue was fractionated by differential centrifugation and the activities of several marker enzymes in the fractions were measured. Cytochrome c oxidase was found primarily in the mitochondrial-light mitochondrial (M+L) fraction. Phosphoglucomutase appeared almost exclusively in the soluble (S) fraction. Monoamine oxidase was concentrated in the nuclear (N) fraction, with a significant amount also in the microsomal (P) fraction but little in M+L or S. Na+, K+-ATPase and ouabain insensitive Mg2+-ATPase were distributed in N, M+L, and P, the former having its highest specific activity in P and the latter in M+L. Rate sedimentation analysis of the M+L fraction indicated that cytochrome c oxidase and Mg2+-ATPase were associated with a rapidly sedimenting particle population (presumably mitochondria), while Na+, K+-ATPase was found primarily in a slowly sedimenting component. At least 75% of the Na+, K+-ATPase in M+L appeared to be associated with structures containing no Mg2+-ATPase. Kinetic properties of the two ATPases were studied in the P fraction and were typical of these enzymes in other tissues. Na+, K+-ATPase activity was highly dependent on the ratio of Na+ and K+ concentrations but independent of absolute concentrations over at least a fourfold range.  相似文献   

14.
The extrapallial fluid of Mytilus edulis is analyzed for inorganic and organic constituents. Disc gel electrophoresis reveals the presence of at least five protein components. The insoluble fraction is sulfated carbohydrate material while the ultrafiltrable portion contains free amino acids. The concentration of calclium is 9.8 ± 0.4 m , 84.7% of which is complexed; 74.3% of the calcium is bound to small molecules, 9.2% to insoluble carbohydrate, 0.88% to soluble macromolecular components, and 15.3% is free. The data suggest that CaCO3 deposition may be controlled by complexation of Ca2+ by small chelates produced by the animal. EPR measurements indicate that the majority of manganese present in the fluid is also bound to small molecules. Titrations of the native fluid with Mn2+ and H+ establish that the chelating capacity of the fluid for Mn2+ is nominally 10−4 . Mn2+ forms 1:1 complexes in the fluid with ligands having an average pKa′ value of 5.2  相似文献   

15.
The amount of divalent cation-activated, diethylstilbestrol-sensitive adenylnucleotidyl phosphatase activity recovered in the ‘microsomes’ (13 000–80 000 x g sediment) from pea stem tissue is strongly influenced by the concentration of Mg2+ in the homogenization medium. The absence of Mg2+ during homogenization results in a marked decrease of the activity found in the microsomal fraction, compensated by its increase in the soluble fraction. Part of the solubilized activity becomes sedimentable at 80 000 × g upon addition of 5–10 mM Mg2+ (or Mn2+, Ca2+, Zn2+) to the supernatant. This sediment shows a very high specific activity, and can be re-solubilized by treatment with either EDTA or 0.3 M monovalent salts, or deoxycholate. When the supernatant containing the solubilized activity is incubated together with low-adenylnucleotidyl phosphatase microsomes and with 10 mM MgCl2 the activity recovered in the sediment is much larger than the sum of the activity of the microsomes plus that of the sediment obtained by incubating the same supernatant with Mg2+. Microsomes prepared with Mg2+ in the homogenization medium do not show this effect. The supernatant/microsomes saturation curves as well as a change of the temperature coefficient of the activity following combination of the soluble preparation with the microsomal particles suggest an at least partial reconstitution of the original enzyme-membrane structure.  相似文献   

16.
Chlorophyll-free plasma membranes of the unicellular green alga Chlamydomonas reinhardtii Dangeard were purified from a microsomal fraction using an aqueous polymer two-phase system of 6.5% (w/w) dextran T500, 6·5% (w/w) polyethylene glycol 3350, 60 mM NaCI, 0 33 M sucrose and 5 mM potassium phosphate (pH 7·8). The plasma membrane fraction contained only 2·4% of the microsomal membrane protein. Specific activity of the plasma membrane marker enzyme, K*, Mg2+-ATPase (EC 3.6.1.3). was enriched 9-fold over the microsomal fraction, and 22% of total activity was recovered in the upper, polyethylene glycol-rich phase. Contamination from intracellular membranes was minimal. K*, Mg2+-ATPase showed a pH optimum at about 6·5, and addition of 0·05% (w/v) Triton X-100 stimulated the activity 3-fold. [3H]-Nimodipinc was employed to characterize 1,4-dihydropyridine-specific membrane receptors. Two apparent binding sites with different affinities to nimodipine were found in the crude microsomal fraction. The separation of plasma membranes from intracellular membranes revealed that one binding site with higher affinity (KD= 9 nM) was located on the plasma membrane and a second binding site with lower affinity (KD= 36 nM) on an intracellular membrane The apparent dissociation constants determined from the association and dissociation rate constants in kinetic experiments were comparable to those determined by equilibrium experiments. The maximum number of binding sites of the plasma membrane fraction and the intracellular membrane fraction was Bmax= 440 and 470 fmol (mg protein)-1, respectively. [3H]-Nimodipinc binding was inhibited by (±) verapamil and stimulated by D-cis-diltiazem in both fractions. Moreover, ethyle-neglycol-bis(2-aminoethylcther)-N, N'-tetraacctic acid (EGTA) inhibited [3H]-nimo-dipinc binding in the plasma membrane fraction but not in the intracellular membrane fraction This effect was cancelled by the addition of CaCl2.  相似文献   

17.
Out of some 750 strains of microorganisms, a potent bacterium for lipase production was isolated from soil and was identified as Chromobacterium viscosum.

The bacterium accumulates lipase in culture fluid when grown aerobically at 26°C for 3 days in a medium composed of soluble starch, soy bean meal, lard and inorganic salts.

Chromobacterium lipase had an optimum pH of 7.0 for activity at 37°C, and an optimal temperature of 65°C at pH 7.0. The enzyme retained 80% of the activity when heated for 10 min at 70°C. This lipase was capable of hydrolyzing a variety of natural fats and oils, and it was more active on lard and butter than on olive oil. The activity was stimulated by Ca2+, Mg2+, Mn2+ and inhibited by Cu2+, Hg2+ and Sn2+. It was not diminished but rather stimulated by a high concentration of bile-salts.  相似文献   

18.
An NAD(P)H-dependent oxidoreductase has been purified approximately 40-fold from the soluble protein fraction of the dissimilatory iron-reducing, anaerobic, thermophilic bacterium Carboxydothermus ferrireducens. The enzyme, a flavoprotein, has broad-substrate specificity—reducing Fe3+, Cr6+, and AQDS with rates of 0.31, 0.33, and 3.3 U mg−1 protein and calculated NADH oxidation turnover numbers of 0.25, 0.25, and 2.5 s−1, respectively. Numerous quinones are reduced via a two-electron transfer from NAD(P)H to quinone, thus participating in managing oxidative stress by avoiding the formation of semiquinone radicals.  相似文献   

19.
The metabolism of exogenously added d-myo-[1-3H]inositol 1,4,5-trisphosphate (IP3) has been examined in microsomal membrane and soluble fractions of carrot (Daucus carota L.) cells grown in suspension culture. When [3H]IP3 was added to a microsomal membrane fraction, [3H]IP2 was the primary metabolite consisting of approximately 83% of the total recovered [3H] by paper electrophoresis. [3H]IP was only 6% of the [3H] recovered, and 10% of the [3H]IP3 was not further metabolized. In contrast, when [3H]IP3 was added to the soluble fraction, approximately equal amounts of [3H]IP2 and [3H]IP were recovered. Ca2+ (100 micromolar) tended to enhance IP3 dephosphorylation but inhibited the IP2 dephosphorylation in the soluble fraction by about 20%. MoO42− (1 millimolar) inhibited the dephosphorylation of IP3 by the microsomal fraction and the dephosphorylation of IP2 by the soluble fraction. MoO42−, however, did not inhibit the dephosphorylation of IP3 by the soluble fraction. Li+ (10 and 50 millimolar) had no effect on IP3 metabolism in either the soluble or membrane fraction; however, Li+ (50 millimolar) inhibited IP2 dephosphorylation in the soluble fraction about 25%.  相似文献   

20.
Requirement, uptake, and subcellular distribution of Na2 75SeO3 in the larvae of the insectC. cephalonica was investigated. That Se is well tolerated byC. cephalonica upto an added level of 2 ppm in the diet is suggested by the observed increase in body weight, total protein, and succinate dehydrogenase levels. Significant increases in the State 3 respiration ensued with Se supplementation up to 2 ppm in the mitochondrial oxidation of D-glycerol 1-phosphate, succinate and NADH, along with concomitant unaltered State 4 respiration, leading to enhanced RCR values. Maximal uptake of75Se was registered in the larvae maintained on basal diet when subjected to short-term exposure to 0.5 ppm75Se level. When exposure level was further increased up to 20 ppm, the observed decrease in the uptake of75Se suggested that Se status of larvae itself controlled the tissue uptake. Subcellular distribution pattern revealed maximal incorporation of75Se (cpm/g tissue) in the supernatant fraction, whereas, maximal specific75Se activity (cpm/mg protein) was associated with the mitochondrial fraction. Autoradiography of the soluble fractions indicated the presence of single selenoprotein in the larval group with short term 2 ppm75Se exposure. Inherent Se controls both the extent and the nature of distribution of mitochondrial75Se incorporation. Uptake of45Ca by the insect mitochondria was enhanced by dietary Se up to 2 ppm but was unaffected by addition ofin vitro 75Se in the medium. A more fundamental role for Se in the mitochondrial energy metabolism emerges from these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号