首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase activator activated the reaction by Saccharomycopsis lipolytica lipase at neutral pH in the presence of calcium ions, and 5 μg of the activators were sufficient to cause the reaction to proceed at maximum activity in the presence of 2 μl of tributyrin and 0.4 units of the lipase in a total volume of 360 μl.

To define the roles of the activator and calcium ion, we studied interactions between the activator and the lipase, between the activator and a hydrophobic interface, and between the lipase and the interface. Results suggest that the interfacial adsorption of the lipase is the limiting process of lipolysis and that it is controlled by the activator and by the concentration of calcium ions.  相似文献   

2.
A lipase with a high molecular weight was purified from Chromobacterium viscosum by chromatography using the Amberlite CG–50 and Sephadex G–75. The purified lipase (Lipase A) was found to be homogeneous by disc electrophoresis.

Lipase A had an optimum pH around 7 for lipolysis of olive oil and the enzyme was stable at the range of pH 4 to 9 and below 50°C. Zn2+, Cu2+, Fe3+ and high concentrations of l-cysteine, iodoacetic acid and NBS had remarkable inhibitory effects. Bile salts were activator. Lipase A was more active on water insoluble esters than water soluble esters. The isoelectric point of the enzyme was pH 4.7.  相似文献   

3.
To obtain actinomycetes capable of producing new enzyme affectors such as enzyme inhibitors or activators, a screening test was carried out. Streptomyces sp. strain No. BR-1381 isolated in our laboratory produced a proteinous lipase activator abbreviated as LAV. LAV was purified from the culture filtrate by salting-out with ammonium sulfate, DEAE-cellulose column chromatography and gel filtration on Sephadex G-100. LAV was stable in the pH range from 3 to 7 at 37°c for 20 hr and in a wider range of pH at 4°C for 5 days. LAV itself was very stable against heat treatment, but LAV did not have any effect on the thermal stability of Phycomyces nitens lipase. LAV activated several microbial lipases, but did not activate pancreatic or rice bran lipases. LAV particularly showed strong activation for Phycomyces nitens lipase.  相似文献   

4.
Summary The role of electrical properties of interfaces upon the activity of free and immobilised Yarrowia lipolytica lipase has been investigated. Sodium taurocholate and Sedipur 400, an anionic polyacrylamide, enhance the negative character of the fatty droplets of substrate and tend to improve the lipolytic activity while the cationic polyacrylamide (Sedipur 900) has opposite effects. Ca2+ which reduces the fatty droplets charge as Sedipur 900, is however a good activator of the enzyme. The role of electrical properties on the optimum pH of the immobilised enzyme is clearer. Immobilisation of the lipase on a positively charged support shifts its optimum pH to acidic pH by repulsion towards H+ ions around the support.  相似文献   

5.
Abstract

Lipase based formulations has been a rising interest to laundry detergent industry for their eco-friendly property over phosphate-based counterparts and compatibility with chemical detergents ingredients. A thermo-stable Anoxybacillus sp. ARS-1 isolated from Taptapani Hotspring, India was characterized for optimum lipase production employing statistical model central composite design (CCD) under four independent variables (temperature, pH, % moisture and bio-surfactant) by solid substrate fermentation (SSF) using mustard cake. The output was utilized to find the effect of parameters and their interaction employing response surface methodology (RSM). A quadratic regression with R2?=?0.955 established the model to be statically best fitting and a predicted highest lipase production of 29.4?IU/g at an optimum temperature of 57.5?°C, pH 8.31, moisture 50% and 1.2?mg of bio-surfactant. Experimental production of 30.3?IU/g lipase at above conditions validated the fitness of model. Anoxybacillus sp. ARS-1 produced lipase was found to resist almost all chemical detergents as well as common laundry detergent, proving it to be a prospective additive for incorporation.  相似文献   

6.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

7.
The fungus Geotrichum candidum was selected from isolates of oil-mill waste as a potent lipase producer. Factors affecting lipase production by the fungus G. candidum in yeast-extract-peptone medium have been optimized by using a Box–Behnken design with seven variables to identify the significant correlation between effects of these variables in the production of the enzyme lipase. The experimental values were found to be in accordance with the predicted values, the correlation coefficient is 0.9957. It was observed that the variables days (6), pH (7.0), temperature (30 °C), carbon (1.25%), nitrogen (2.0%), Tween (1.0%) and salt concentrations (0.5 mM) were the optimum conditions for maximum lipase production (87.7 LU/ml). The enzyme was purified to homogeneity with an apparent molecular mass of 32 kDa by SDS-PAGE. The optimum pH at 40 °C was 7.0 and the optimum temperature at pH 7.0 was 40 °C. The enzyme was stable within a pH range of 6.5 to 8.5 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, and EDTA. However, the presence of Ca2+ and Ba2+ ions enhanced the activity of the enzyme.  相似文献   

8.
Two novel lipase genes (lipJ02, lipJ03) were isolated directly from environmental DNA via genome-walking method. Lipase gene lipJ02 contained an open reading frame (ORF) of 1,425 bp and encoded a 474-amino acids lipase protein, while lipase gene lipJ03 contained an ORF of 1,413 bp and encoded a 470-amino acids lipase protein. The lipase genes were cloned into expression vector pPIC9K and successfully integrated into a heterologous fungal host, Pichia pastoris KM71, and the recombinant P. pastoris were screened via a high-throughput method. The recombinants were induced by methanol to secrete active lipases into cultural medium. The recombinant lipases were also purified and characterized. The optimum temperature for the purified lipase LipJ02 and LipJ03 was 30 and 35°C, respectively, at pH 8.0. They exhibited similar thermostability, but LipJ02 exhibited better pH stability than LipJ03.  相似文献   

9.
The extracellular lipase of Staphylococcus warneri was secreted as a protein with an apparent molecular mass of 90 kDa. It was then sequentially processed in the supernatant to a protein of 45 kDa. Tryptic digestion of the crude extract resulted in a homogeneous sample containing only the 45-kDa form. Purification was achieved by hydrophobic chromatography. Purified lipase had an optimum pH of 9.0 and an optimum temperature of 25°C. The enzyme was stable within the range pH 5.0–9.0; it had a broad substrate specificity. The results of inhibition studies were consistent with the view that lipases possess a serine residue at the catalytic site.  相似文献   

10.
Interests in Acinetobacter haemolyticus lipases are showing an increasing trend concomitant with growth of the enzyme industry and the widening search for novel enzymes and applications. Here, we present a structural model that reveals the key catalytic residues of lipase KV1 from A. haemolyticus. Homology modeling of the lipase structure was based on the structure of a carboxylesterase from the archaeon Archaeoglobus fulgidus as the template, which has a sequence that is 58% identical to that of lipase KV1. The lipase KV1 model is comprised of a single compact domain consisting of seven parallel and one anti-parallel β-strand surrounded by nine α-helices. Three structurally conserved active-site residues, Ser165, Asp259, and His289, and a tunnel through which substrates access the binding site were identified. Docking of the substrates tributyrin and palmitic acid into the pH 8 modeled lipase KV1 active sites revealed an aromatic platform responsible for the substrate recognition and preference toward tributyrin. The resulting binding modes from the docking simulation correlated well with the experimentally determined hydrolysis pattern, for which pH 8 and tributyrin being the optimum pH and preferred substrate. The results reported herein provide useful insights into future structure-based tailoring of lipase KV1 to modulate its catalytic activity.  相似文献   

11.
Summary A number of factors affecting production of extracellular lipase by the edible fungus Calvatia gigantea were investigated. Consecutive optimization of carbon and nitrogen sources, initial pH of culture medium and growth temperature resulted in an increase in lipase activity of 87%. Under optimum conditions, activities as high as 22.4 units ml–1 of culture medium were obtained, competing favourably with most activities reported for other lipase hyperproducing microorganisms. The enzyme was optimally active at pH 7.0 and 30°C and had, at optimum pH, half-lives of 75.7 and 22.9 min at 45 and 55°C. Both high activity and kinetic characteristics of the enzyme make this process worthy of further investigation.Correspondence to: B. J. Macris  相似文献   

12.
To obtain a lipase which effectively hydrolyzes castor oil, bacteria were isolated from 500 soil samples. The best strain was examined; its microbiological characteristics suggested that it belongs to the genus Pseudomonas. A lipase from this strain was purified by ammonium sulfate fractionation and chromatographies on DEAE-cellulose and DEAE-Toyopearl 650 M. The enzyme was purified about 400-fold with a yield of 13%. The purified enzyme was electrophoretically homogeneous and its molecular weight was 30,000. The optimum pH and temperature for the hydrolysis of olive oil emulsion were 7.0 and 60°C. The enzyme was stable up to 35°C at pH 7.0 for 30min and also stable from pH 9.0 to 10.0 at 4°C for 22 hr. The activity was inhibited by Fe3+ , Hg2+ , pCMB, and anionic surfactants, and enhanced by nonionic surfactants and bile salts. The enzyme efficiently hydrolyzed castor oil.  相似文献   

13.
A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40–60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8–9. Metal ions such as Ca2+, Mn2+, Na+, and K+ enhanced the lipase activity, but Mg2+, Zn2+, and Fe2+ inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.  相似文献   

14.
Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding. The resulting immobilized biocatalyst was recycled by seven assays, with a retained activity around 10% of its initial activity. Km and Vmax were respectively 228.3 M and 36.1 U mg of protein–1 for immobilized enzyme. Whereas the optimum temperature remained the same for both soluble and immobilized lipase (45 °C), there was a shift in pH profiles after immobilization. Optimum pH for the immobilized lipase was 8.0. Immobilized enzyme showed to be more resistant than soluble lipase when assays were performed out of the optimum temperature or pH.  相似文献   

15.
Despite the already established route of chemically catalyzed transesterification reaction in biodiesel production, due to some of its shortcomings, biocatalysts such as lipases present a vital alternative. Namely, it was noticed that one of the key shortcomings for the optimization of the enzyme catalyzed biodiesel synthesis process is the information on the lipase activity in the reaction mixture. In addition to making optimization difficult, it also makes it impossible to compare the results of the independent research. This article shows how lipase intended for use in biodiesel synthesis can be easily and accurately characterized and what is the enzyme concentration that enables achievement of the desired level of fatty acid methyl esters (FAME) in the final product mixture. Therefore, this study investigated the effect of two different activity loads of Burkholderia cepacia lipase on the biodiesel synthesis varying the pH and temperature optimal for lipase activity. The optimal lipase pH and temperature were determined by two different enzyme assays: spectrophotometric and titrimetric. The B. cepacia lipase pH optimum differentiated between assays, while the lipase optimally hydrolyzed substrates at 50°C. The analysis of FAME during 24 hr of biodiesel synthesis, at two different enzyme concentrations, pH 7, 8, and 10, and using two different buffers, revealed that the transesterification reaction at optimal pH, 1 hr reaction time and lipase activity load of 250 U per gram of reaction mixture was sufficient to produce more than 99% FAME.  相似文献   

16.
The fungus Cunninghamella verticillata was selected from isolates of oil-mill waste as a potent lipase producer as determined by the Rhodamine-B plate method. The lipase was purified from C. verticillata by ammonium sulphate fractionation, ion exchange chromatography and gel filtration. The purified enzyme was formed from a monomeric protein with molecular masses of 49 and 42 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 7.5 and the optimum temperature at pH 7.5 was 40 °C. The enzyme was stable between a pH range of 7.5 and 9.0 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, CdCl2 and EDTA. However, the presence of Ca2+, Mn2+ and Ba2+ ions enhanced the activity of the enzyme. The activity of purified lipase with respect to pH, temperature and salt concentration was optimized using a Box–Behnken design experiment. A polynomial regression model used in analysing this data, showed a significant lack of fitness. Therefore, quadratic terms were incorporated in the regression model through variables. Maximum lipase activity (100%) was observed with 2 mM CaCl2, (pH 7.5) at a temperature of 40 °C. Regression co-efficient correlation was calculated as 0.9956.  相似文献   

17.
Abstract: Primary cultures of chromaffin cells from bovine adrenal medullae were used as a model to study lipolytic events during stimulus-secretion coupling. It has been shown that chromaffin cells liberate arachidonic acid in addition to their main secretion product, the catecholamines. To understand more about the mechanism of arachidonic acid liberation, chromaffin cells were labeled with radioactive arachidonic acid, stimulated, and then analyzed for changes in lipid composition. After stimulation with 10?4M acetylcholine, the radioactivity of triacylglycerols decreased to the same extent that the free arachidonic acid level rose. This finding suggests that in bovine chromaffin cells a stimulation-dependent triacylglycerol lipase (triacylglycerol hydrolase; EC 3.1.1.3) is involved in arachidonic acid liberation. Further work was performed on detection, characterization, and isolation of this enzyme. Triacylglycerol lipase activity was found in whole cell homogenates and in plasma membrane fractions isolated from adrenal medullary tissue. The plasma membrane lipase showed a pH optimum of 4.3. The apparent Michaelis constant was determined as 3.3 × 10?4 mol/L. Ca2+ did not influence the enzymatic activity. To differentiate the plasma membrane triacylglycerol lipase from the previously described plasma membrane diacylglycerol lipase of chromaffin cells, the influence of RG 80267, a specific diacylglycerol lipase inhibitor, was examined. RG 80267 (50 μM) inhibited the triacylglycerol lipase by only 24%, although diacylglycerol lipase was totally inhibited with only 20 μM RG 80267. The pH optimum of homogenate lipase was broad, lying between 4 and 7. Starting from the soluble fraction of whole cell homogenates, the triacylglycerol lipase was partially purified by ultracentrifugation and size-exclusion chromatography. The molecular mass of the enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was found to be between 47 and 57 kDa.  相似文献   

18.
A lipase gene (lip3) was cloned from the Pseudomonas aeruginosa strain LST-03 (which tolerates organic solvents) and expressed in Escherichia coli. The cloned sequence includes an ORF consisting of 945 nucleotides, encoding a protein of 315 amino acids (Lip3 lipase, 34.8 kDa). The predicted Lip3 lipase belongs to the class of serine hydrolases; the catalytic triad consists of the residues Ser-137, Asp-258, and His-286. The gene cloned in the present study does not encode the LST-03 lipase, a previously isolated solvent-stable lipase secreted by P. aeruginosa LST-03, because the N-terminal amino acid sequence of the Lip3 lipase differs from that of the LST-03 lipase. Although the effects of pH on the activity and stability of the Lip3 lipase, and the temperature optimum of the enzyme, were similar to those of the LST-03 lipase, the relative activity of the Lip3 lipase at lower temperatures (0–35°C) was higher than that of the LST-03 lipase. In the absence of organic solvents, the half-life of the Lip3 lipase was similar to that of the LST-03 lipase. However, in the presence of most of the organic solvents tested in this study (the exceptions were ethylene glycol and glycerol), the stability of the Lip3 lipase was lower than that of the LST-03 lipase.Communicated by H. Ikeda  相似文献   

19.
Abstract

Fungal lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. In the present study, Aspergillus fumigatus isolated from oil-contaminated soil produced good amount of lipase activity with galactose (1%) as carbon source and peptone (0.1%) as nitrogen source after 72?h of incubation in the production medium at 45?°C and pH 10.0. The isolated enzyme was found to give its optimum reaction temperature at 40?°C and pH 9.0 with the substrate used as p-nitrophenyl benzoate. The activity of lipase was inhibited by the presence of metal ions. A 6.68-fold increase for lipase production was obtained by one variable at a time. Based on the findings of present study, lipase of A. fumigatus is a potential lipase and a candidate for industrial applications such as bioremediation, detergent, leather and pharmaceutical industries.  相似文献   

20.
Growth and production of lipase by a new Geotrichum-like strain, R59, were studied. Production of extracellular lipase was substantially enhanced when the initial pH of the culture medium, types of carbon and nitrogen sources, substances probably stimulating the lipase biosynthesis, the temperature, and time of growth were optimized. Sucrose and triolein were the most effective carbon sources for lipase production. Maximum lipase activity (146 U/ml–1) was obtained with urea as the nitrogen source. Growth at 30°C, an initial pH of 6.0 and incubation time of 48 h were found as optimum conditions for cell growth and production of lipase by Geotrichum-like strain R59. The enzyme was thermostable and exhibited very high activity after 1 h incubation at 60°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号