首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
6-Pentyl-α-pyrone, 6-propyl-α-pyrone and 4-decenoic acid-δ-lactone were prepared, and the nature of their flavors was investigated. Unsaturated lactones having the best flavorous nature as a butter or butter cake flavor among the lactones having double bond at various site, were 2-ene-δ-lactones which have a double bond at the α-position of the lactone ring and α-pyrones which have two double bonds at the α- and γ-positions. The flavor of 4-deceno-δ-lactone which has a double bond at the γ-position was the worst of them.  相似文献   

2.
Carboxylic acids found in the cultured broth of Sporobolomyces odorus AHU 3246 which produces γ-lactones as principles of the aromatic flavor, were analyzed. The concentrate of methylated acids was steam-distilled and in the residue, succinic acid, nonanedioic acid (azelaic acid), undecanedioic acid and 2-hydroxy-3-phenylpropionic acid (β-phenyllactic acid) were identified as their methyl esters by GLC and spectroscopic methods. Phthalic acid and its mono-n-butyl ester were also found, but these compounds were thought to arise from di-n-butyl phthalate, one of impurities of deionized water.  相似文献   

3.
Volatile flavor components of watermelon fruit (Citrullus vulgaris) were obtained by distilling juice under reduced pressure and extracting the resulting distillate with Freon-11. The volatiles were separated into acidic and neutral fractions and then analyzed by gas chromatography and gas chromatography-mass spectrometry.

Fifty-two compounds were found for the first time as flavor components of watermelon. Among them, the following compounds have not been previously reported as naturally occurring flavor components: 4-oxononanal and 2-hydroxy-, 2-pentyloxy-, 2-hexyloxy-, 2-octyloxy-, 2-nonyloxy-, 2-[(Z)-3-noneyloxy]-, 2-[(Z)-2-nonenyloxy]-, 2-[(Z,Z)-3,6-nonadienyloxy]-, 2-benzyl-oxy-, and 2-phenetyloxy-5-pentyltetrahydrofurans.  相似文献   

4.
Two new components of botrytised wine were identified: 4,5-dimethyl-3-hydroxy-2(5H)-furanone (Sotolon) and ethyl 9-hydroxynonanoate. Sotolon, the key substance of cane sugar aroma, was identified as the sugary flavor substance of botrytised wine by means of gas chromatography-mass spectrometry after column chromatographic separation on DEAE-Sephadex and silica gel. Ethyl 9-hydroxynonanoate was identified by chemical ionization and electron impact mass spectrometry. To evaluate the role of 17 volatile and 5 nonvolatile compounds characteristic of botrytised wine, these compounds were added to a normal wine. This produced a sweet, honey-like flavor similar to that of botrytised wine. The importance of Sotolon and the role of each group of flavor substances in producting this flavor was clarified by omission tests.  相似文献   

5.
A simple and efficient synthesis of (±)-massoilactone (1) as a key substance for the butter and milk flavor was accomplished from n-hexanal in only a few steps. Application of its racemic synthesis enabled natural (R)-(?)- and unnatural (S)-(+)-massoilactone (1a, 1b) to be synthesized by starting from commercially available (R)-(+)-1,2-epoxyheptane (5).  相似文献   

6.
The sodium salt of 6-hydroxy-5-(phenylazo)-2-naphthalenesulfonic acid (SS-AN), which is a subsidiary color present in Food Yellow No. 5 [Sunset Yellow FCF, disodium salt of 6-hydroxy-5-(4-sulfophenylazo)-2-naphthalenesulfonic acid], was orally administered to Sprague–Dawley rats. Metabolite A, metabolite B, and unaltered SS-AN were detected as colored metabolites in the rat urine. Analysis of the chemical structures showed that metabolite A (major peak) was 6-hydroxy-5-(4-sulfooxyphenylazo)-2-naphthalenesulfonic acid, the sulfuric acid conjugate of SS-AN, and metabolite B (minor peak) was 6-hydroxy-5-(4-hydroxyphenylazo)-2-naphthalenesulfonic acid (SS-PAP), which is a derivative of metabolite A without the sulfuric acid. The colorless metabolites p-aminophenol, o-aminophenol, and aniline present in the urine were analyzed by liquid chromatography–mass spectrometry. The orally administered SS-AN had been metabolized to the colorless metabolites (p-aminophenol 45.3%, o-aminophenol 9.4%, aniline 0.4%) in the 24-h urine samples. Analysis of the colored metabolites by high-performance liquid chromatography with detection at 482 nm indicated the presence of metabolite A (0.29%), SS-PAP (0.01%), and SS-AN (0.02%) were detected in the 24-h urine samples. Approximately 56% of SS-AN was excreted into the urine and the rest is probably excreted into feces.  相似文献   

7.
Four new xanthone glucosides, 3-hydroxy-2-methoxyxanthone-4-O-β-D-glucopyranoside ( 1 ), 4,8-dihydroxy-2-methoxyxanthone-3-O-β-D-glucopyranoside ( 2 ), 2-methoxyxanthone-5-O-β-D-glucopyranoside ( 3 ), 4-hydroxy-2-methoxyxanthone-3-O-β-D-glucopyranoside ( 4 ), a new phenolic acid, 4,4-dihydroxy-3,3-imino-di-benzoic acid monomethyl ester ( 5 ), and a new isoquinoline, methyl 6-hydroxy-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate ( 6 ) were isolated from the fruit of Hypericum patulum. The structural elucidation of the isolated compounds was primarily based on HR-ESI-MS, UV, IR, 1D and 2D NMR. All compounds were evaluated for their inhibitory effect against LPS-induced NO production in RAW 264.7 cells. Compound 2 , 3 exhibited moderate inhibitory activity against NO production.  相似文献   

8.
Lipases from Aspergillus niger and Rhizopus delemar hydrolyzed triolein and produced l,2 (2,3)-diolein and 2-monoolein. These two lipases appears to have strong specificity towards the outer chains of the triglyceride. Comparing the proportions of fatty acids in position 1 (3) of cocoa butter with proportions of fatty acids liberated after limited hydrolysis of cocoa butter, it becomes clear that these two lipases do not hydrolyze the ester bond in position 2 of the triglyceride.

On the other hand, lipases from Geotrichum candidum Link and Penicillium cyclopium Westring attacked the fatty acid chains regardless of their positions. Geotrichum candidum lipase liberated oleic acid and palmitic acid in preference to stearic acid from cocoa butter.  相似文献   

9.
Mass spectra of the δ-lactones of the following 5-hydroxy-2-enoic acids were determined: 5-hydroxyhex-2-enoic acid (I), 5-hydroxyoct-2-enoic acid (II), 5-hydroxydec-2-enoic acid (III), 5-hydroxydodec-2-enoic acid (IV), 5-hydroxy-8-methylnon-2-enoic acid (V), 5-hydroxy-6-ethyloct-2-enoic acid (VI), 5-hydroxy-5, 6, 6-trimethylhept-2-enoic acid (VII), and 5-hydroxy-5-methylnon-2-enoic acid (VIII). The following modes of fragmentation are consistent with observed m/e values, metastable peaks, and established modes of breakdown in compounds containing similar atomic groupings:—1. Loss of side chain, resulting in ions at m/e 97 for I-VI and at m/e 111 and 153 for VII and VIII (diagnostic peaks); 2. 1,4-Rupture of the ring giving an ion at m/e 68 (diagnostic peak) which loses CO to give m/e 40; 3. Loss of CO from m/e 97 fragment to give m/e 69 which breaks down further to m/e 41→m/e 39; 4. 1, 4-Rupture of m/e 111 and m/e 153 fragments to give m/e 43 and 85, further breakdown of m/e 85→57→41→39; 5. Loss of H2O from the molecular ion providing there is a hydrogen atom on C5 and the side chain is at least 3 carbon atoms in length, further loss of H2O when the side chain is equal to C5 or C7; 6. Loss of CO2 from the molecular ion of I, IV-VIII; 7. Loss of CO from all molecular ions; 8. Loss of 2×28 from the molecular ions of III, IV, V, VI; 9. Loss of (18 + 28) from the molecular ion of III, IV, V, VI; 10. Loss of 60 from the molecular ion of II, III, IV, V, VI; 11. Formation of M + 1 ion (169) of VII and VIII; 12. Formation of M + 1 ion (143) of saturated δ-octalactone and loss of H2O from this M + 1 ion.  相似文献   

10.
We have previously described the isolation of the new bacterial species, Ralstonia/Burkholderia sp. strain DSM 6920, which grows with 6-methylnicotinate and regioselectively hydroxylates this substrate in the C2 position by the action of 6-methylnicotinate-2-oxidoreductase to yield 2-hydroxy-6-methylnicotinate (Tinschert et al. 1997). In the present study we show that this enzymatic activity can be used for the preparation of a series of hydroxylated heterocyclic carboxylic acid derivatives. The following products were obtained from the unhydroxylated educts by biotransformation using resting cells: 2-hydroxynicotinic acid, 2-hydroxy-6-methylnicotinic acid, 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid, 3-hydroxypyrazine-2-carboxylic acid, 3-hydroxy-5-methylpyrazine-2-carboxylic acid and 3-hydroxy-5-chloropyrazine-2-carboxylic acid. Thus the respective educts were all regioselectively mono-hydroxylated at the carbon atom between the ring-nitrogen and the ring-carbon atom carrying the carboxyl group. In contrast to its relatively broad biotransformation abilities, the strain shows a limited heterocyclic nutritional spectrum. It could grow only with three of the seven transformed educts: 6-methylnicotinate, 2-hydroxy-6-methylnicotinate and 5-methylpyrazine-2-carboxylate. 2-Hydroxynicotinate, 2-hydroxy-6-chloronicotinate, 2-hydroxy-5,6-dichloronicotinate, 3-hydroxypyrazine-2-carboxylate and 3-hydroxy-5-chloropyrazine-2-carboxylate were not degraded by the strain. Therefore, unlike 6-methylnicotinate-2-oxidoreductase, which has a broad substrate spectrum, the second enzyme of the 6-methylnicotinate pathway seems to have a much more limited substrate range. Among 28 aromatic heterocyclic compounds tested as the sole source of carbon and energy, only pyridine-2,5-dicarboxylate was found as a further growth substrate, and this was degraded by a pathway which did not involve 6-methylnicotinate-2-oxidoreductase. To the best of our knowledge the microbial production of 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid and 3-hydroxy-5-methylpyrazine-2-carboxylic acid have not been reported before. Strain DSM 6920 is so far the only known strain which allows the microbial production of both these compounds and 3-hydroxypyrazine-2-carboxylic acid and 3-hydroxy-5-chloroypyrazine-2-carboxylic acid. Received: 18 June 1999 / Received revision: 30 August 1999 / Accepted: 3 September 1999  相似文献   

11.
12.
The degradation of a lignin substructure model compound, 5-formyl-3-hydroxymethyl-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-methoxycoumaran (I), in ligninolytic culture of a white-rot wood decay fungus,Phanerochaete chrysosporium, was investigated. It was found that I was hydroxylated or dehydrogenated in its coumaran ring to give 2-(5-formyl-2-hydroxy-3-methoxyphenyl)-3-hydroxypropiosyringone (II) and two coumarones, 5-formyl-3-hydroxymethyl-2-(4-hydroxy-3,5-dimethyoxyphenyl)-7-methoxycoumarone (V) and 3,5-diformyl-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-methoxycoumarone (VI), II was further converted to 2,6-dimethoxy-p-benzoquinone (IV), syringic acid (III), and 5-carboxyvanillic acid (VIII). These metabolic products were identified by mass spectrometric comparison with the authentic compounds. A proposed pathway for the degradation of I is presented on the basis of these metabolic products. The degradation could be catalyzed mainly by phenol-oxidizing enzymes.Non-Standard Abbreviations TLC thin layer chromatography  相似文献   

13.
The secondary alcohol oxidase from Pseudomonas sp. catalyzed the oxidation of various vinyl alcohol oligomers with the molecular weight of 220 to 1500 and of β-ketols such as 5-hydroxy-3-heptanone, 4-hydroxy-2-nonanone, 3-hydroxy-5-nonanone, 6-hydroxy-4-nonanone, 7-hydroxy-5-dodecanone, and 8-hydroxy-6-tridecanone. β-Diketone hydrolase from the same strain catalyzed the hydrolysis of various aliphatic β-diketones and some aromatic β-diketones such as 1-phenyl-1,3-butanedione and 1-phenyl-2,4-pentanedione. 4,6-Nonanediol, used as a low molecular weight model of poly(vinyl alcohol) (PVA), was oxidized to 4,6-nonanedione by way of 6-hydroxy-4-nonanone by secondary alcohol oxidase. 4,6-Nonanedione was hydrolyzed to 2-pentanone and n-butyric acid by β-diketone hydrolase. These reactions were stoichiometric.

The presence of the β-diketone structure in PVA oxidized by secondary alcohol oxidase was confirmed by spectral experiments. The absorption due to β-diketone structure in the oxidized PVA decreased as it was hydrolyzed by β-diketone hydrolase. The ratio of the amount of carboxyl groups in the degraded PVA to that of carbonyl groups in the oxidized PVA became more than 0.5. A pathway for the enzymatic degradation of PVA was proposed.  相似文献   

14.
To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.  相似文献   

15.
We compared the volatile profiles in soy sauce according to inoculation with Tetragenococcus halophilus and/or Zygosaccharomyces rouxii. Totals of 107 and 81 volatiles were respectively identified by using solid-phase microextraction and solvent extraction. The various volatile compounds identified included acids, aldehydes, esters, ketones, furans and furan derivatives, and phenols. The major volatiles in the samples treated with T. halophilus were acetic acid, formic acid, benzaldehyde, methyl acetate, ethyl 2-hydroxypropanoate, 2-hydroxy-3-methyl-2-cyclopenten-1-one, and 4-hydroxy-3-methoxybenzaldehyde, while those in the samples inoculated with Z. rouxii were mainly ethanol, acetaldehyde, ethyl propanoate, 2/3-methylbutanol, 1-butanol, 2-phenylethanol, ethyl 2-methylpropanoate, and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone. The results indicate that T. halophilus produced significant acid compounds and could affect the Z. rouxii activity, supporting the notion that yeasts and lactic acid bacteria respectively have different metabolic pathways of alcoholic fermentation and lactic acid fermentation, and produce different dominant volatile compounds in soy sauce.  相似文献   

16.
Debutenoyl-aspertetronin A was synthesized from γ-valerolactone-γ-carboxylic acid (4) via 2, 5-dihydro-3-hydroxy-2-methyl-5-oxo-2-furanpropanoic acid. Starting from (?)-(S)-4, (+)-(S)-5-hexyl-4-hydroxy-5-methyl-2(5H)furanone (19) was synthesized, and by comparison of its optical rotation with that of an authentic sample it was proved that aspertetronin A had (R) configuration, and gregatin A had (S) configuration at their respective chiral carbon.  相似文献   

17.
Four new bitter terpenoids, lucidenic acids A (1), B (2), C (3) and ganoderic acid C (5), were isolated from the fruiting bodies of Ganoderma lucidum, together with the known bitter ganoderic acid B (4). On the basis of spectroscopic data and chemical conversion, their structures were determined to be 7β-hydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 7β,12β-dihydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 3β,7β,12β-trihydroxy-4,4,14α-trimethyl-11,15-dioxo-5α-chol-8-en-24-oic acid and 7β-hydroxy-3,11,15,23-tetraoxo-5α-lanost- 8-en-26-oic acid, respectively.  相似文献   

18.
Novel decenoic acids such as (E)-4-decenoic acid and (E)- and (Z)-5-,6-decenoic acid were detected as minor components in heated butter using GC and GC/MS. The formation mechanism of these novel decenoic acids is discussed on the basis of the result of the reaction of δ-decalactone with active clay in a model experiment.  相似文献   

19.
Summary

Wheat bran contains several ester-linked dehydrodimers of ferulic acid, which were detected and quantified after sequential alkaline hydrolysis. The major dimers released were: trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (5–8-BendiFA), (Z)-β-(4-[(E)-2-carboxyvinyl]-2-methoxy-phenoxy)-4-hydroxy-3-methoxycinnamic acid (8-O-4-diFA) and (E,E)-4,4′-dihydroxy-5,5′-dimethoxy-3,3′-bicinnamic acid (5–5-diFA). trans-7-hydroxy-1-(4-hydroxy-3methoxyphenyl)-6-methoxy-1,2-dihydro-naphthalene-2,3-dicarboxylic acid (8–8-diFA cyclic form) and 4,4′-dihydroxy-3,3′-dimethoxy-β,β'-bicinnamic acid (8–8-diFA non cyclic form) were not detected. One of the most abundant dimers, 8-O-4-diFA, was purified from de-starched wheat bran after alkaline hydrolysis and preparative HPLC. The resultant product was identical to the chemically synthesised 8-O-4-dimer by TLC and HPLC as confirmed by 1H-NMR and mass spectrometry. The absorption maxima and absorption coefficients for the synthetic compound in ethanol were: λmax: 323 nm, λmin: 258 nm, ελmax (M?1cm?1): 24800 ± 2100 and ε280 (M?1cm?1): 19700 ± 1100. The antioxidant properties of 8-O-4-diFA were assessed using: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes and; (b) scavenging of the radical cation of 2,2′-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue, Trolox C. The 8-O-4-diFA was a better antioxidant than ferulic acid in both lipid and aqueous phases. This is the first report of the antioxidant activity of a natural diferulate obtained from a plant.  相似文献   

20.
Seo JS  Keum YS  Hu Y  Lee SE  Li QX 《Biodegradation》2007,18(1):123-131
Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6-␣and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号