首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. L-Asparaginase (EC 3.5.1.1) from Escherichia coli A–l–3 was acetylated using acetic anhydride as a modifying chemical. The fully acetylated L-asparaginase retained 60% of the activity of the unmodified L-asparaginase.

  2. The acetylated L-asparaginase hydrolyzed D-asparagine and L-glutamine as well as L-asparagine in the same ratio as the unmodified L-asparaginase did.

  3. However, the effects of pH on the activity of the acetylated L-asparaginase showed very interesting differences from that of L-asparaginase. On the other hand, both L-asparaginase and the acetylated L-asparaginase exhibited similar pH activity curves on L-glutamine hydrolysis.

  4. The acetylated L-asparaginase was found to become more stable against acid or heat in the presence of L-aspartate than in its absence in the same manner as L-asparaginase was.

  相似文献   

2.
Crystalline l-asparaginase from Escherichia coli A-I-3 hydrolyzed d-asparagine, l- and d-glutamine but at much slower rates than the rate at which it hydrolyzed l-asparagine. Inhibitions by these substrates and related compounds were revealed to be competitive.

d-Asparagine showed the same affinity for the enzyme both in its hydrolysis and inhibition of l-asparagine hydrolysis. l-Aspartate, d-aspartate and α-N-ethylasparagine inhibited various hydrolysis reactions with the respective inhibitor constants. The enzyme was found to hydrolyze β-methylaspartate as well as β-aspartohydroxamate. These data strongly suggest that the hydrolysis occurred at the same active site of the enzyme molecule with relatively low specificity for the configuration of the substrate molecule and the kind of bonding which it hydrolyzes.  相似文献   

3.
During the course of studies on the oxidative metabolism of d-sorbitol by acetic acid bacteria, it was found that d-sorbitol was almost quantitatively converted to 5-keto-d-fructose via l-sorbose by a certain strain of Gluconobacter suboxydans. In addition to 5-keto-d-fructose, three γ-pyrone compounds, kojic acid, 5-oxymaltol, and 3-oxykojic acid, 2-keto-l-gulonate, and several organic acids such as succinic, glycolic, and glyceric acids were confirmed in the culture filtrate of this bacterium.
  • The most suitable carbon source for 5-ketofructose fermentation by Gluconobacter suboxydans Strain 1 was confirmed to be d-sorbitol or l-sorbose using growing and resting cells. d-Fructose had little effect on the formation of this dicarbonylhexose.

  • The optimal pH for the formation from l-sorbose by intact cells was found to be at 4.2.

  • The activity of the pentose phosphate cycle in the resting cells was calculated as 13~17 μatoms/hr/mg of dry cells by the use of the manometric techniques.

  • There was no strain tested so far which could accumulate a large amount of 5- keto-d-fructose from d-sorbitol except this bacterium.

  • The experimental results shown in this paper makes the prediction that a certain dehydrogenating system of l-sorbose is functional in the organism, and the metabolic pathways of d-sorbitol via l-sorbose and 5-keto-d-fructose is proposed.

  相似文献   

4.
l-asparaginase (l-asparagine amino hydrolase, E.C.3.5.1.1) is an enzyme clinically accepted as an antitumor agent to treat acute lymphoblastic leukemia and lymphosarcoma. It catalyzes l-asparagine (Asn) hydrolysis to l-aspartate and ammonia, and Asn effective depletion results in cytotoxicity to leukemic cells. Microbial l-asparaginase (ASNase) production has attracted considerable attention owing to its cost effectiveness and eco-friendliness. The focus of this review is to provide a thorough review on microbial ASNase production, with special emphasis to microbial producers, conditions of enzyme production, protein engineering, downstream processes, biochemical characteristics, enzyme stability, bioavailability, toxicity and allergy potential. Some issues are also highlighted that will have to be addressed to achieve better therapeutic results and less side effects of ASNase use in cancer treatment: (a) search for new sources of this enzyme to increase its availability as a drug; (b) production of new ASNases with improved pharmacodynamics, pharmacokinetics and toxicological profiles, and (c) improvement of ASNase production by recombinant microorganisms. In this regard, rational protein engineering, directed mutagenesis, metabolic flux analysis and optimization of purification protocols are expected to play a paramount role in the near future.  相似文献   

5.
Extracellular asparaginase from Candida utilis was partially purified by precipitation with acetone and by column chromatography on DEAE Sephadex A-50 and Sephadex G-200. The specific activity of the enzyme preparation was 3900 units per mg of protein. Candida asparaginase characteristically had deaminating activity for d-asparagine as well as for l-asparagine. But this enzyme was not able to hydrolyzed l- or d-glutamine. SH inhibitor, chelating agents and metal ions did not show any inhibition or activation of l-asparaginase activity. Optimum pH was about 6 for both l- and d-asparagine. This asparaginase was stable between pH 4 and pH 10 in heating for 10 min at 50°C.  相似文献   

6.
The effect of dissolved oxygen (DO) level and pH (controlled/uncontrolled) was first studied to enhance the production of novel glutaminase-free L-asparaginase by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. The optimum level of DO was found to be 20%. The production of L-asparaginase was found to be maximum when pH of the medium was maintained at 8.5 after 12?h of fermentation. Under these conditions, P. carotovorum produced 17.97?U/mL of L-asparaginase corresponding to the productivity of 1497.50?U/L/h. The production of L-asparaginase was studied in fed-batch bioreactor by feeding L-asparagine (essential substrate for production) and/or glucose (carbon source for growth) at the end of the reaction period of 12?h. The initial medium containing both L-asparagine and glucose in the batch mode and L-asparagine in the feeding stream was found to be the best combination for enhanced production of glutaminase-free L-asparaginase. Under this condition, the L-asparaginase production was increased to 38.8?U/mL, which corresponded to a productivity of 1615.8?U/L/h. The production and productivity were increased by 115.8% and 7.9%, respectively, both of which are higher than those obtained in the batch bioreactor experiments.  相似文献   

7.
  1. The 1C conformation was estimated for α-d-galactopyranosiduronic acid moiety of pectic acid in the permethylated derivative dissolved in 1 n NaOD-D2O and in the peracetylated derivative dissolved in dimethyl sulfoxide-d6, and the C1 conformation was estimated for some derivatives of d-galactopyranuronic acid in chloroform-d by NMR spectroscopy.

  2. Random conformation of the whole macromolecule was estimated for pectic acid in water on the basis of no appearance of any induced Cotton effects in the 200 ~ 700 mμ region in the ORD spectra of pectic acid-anionic dye complexes.

  3. The conformation was supported by the fact that the rate of periodate oxidation of pectic acid at 5° was slightly decreased in comparison with that of amylase in 7 m urea solution.

  相似文献   

8.
The protease from Streptomyces cellulosae preferentially catalyzed the condensation reaction producing tripeptide amides in highly concentrated mixture solutions of various dipeptides and amino acid amides, although it weakly hydrolyzed the substrates at the same time. The tripeptide amides formed were l-Leu-Gly-Gly-NH2 (PLGGN) from l-Leu-Gly and Gly-NH2 and l-Leu-Gly-l-Leu-NH2 (PLGLN) from l-Leu-Gly and l-Leu-NH2. Moreover, the ratio of the rate of PLGLN formation per the proteolytic activity of this enzyme was much larger than those of the other proteases tested.

The formation of PLGLN was studied at various concentrations of the substrates (l-Leu-Gly and. l-Leu-NH2). The dependences of the initial velocities of PLGLN formation on the substrates concentrations could be explained by a two-substrate, one-product reaction mechanism involving a single active center forming the peptide bonds and two substrate-binding sites. The values of the substrate dissociation constants for enzyme-substrate complexes were about 0.6 m for l-Leu-Gly and 0.008 m for l-Leu-NH2.  相似文献   

9.
The protease from Streptomyces cellulosae formed more turbidity in a 16% soybean protein hydrolysate in the initial stage of the reaction than α-chymotrypsin did, when the proteolytic activity of the protease was same as that of α-chymotrypsin. In highly concentrated solutions (2.5%) of various dipeptides, oligopeptides were produced by condensation by the protease. The oligopeptides formed were (l-Leu-Gly)2 and (l-Leu-Gly)3 from l-Leu-Gly, (l-Phe-l-Val)2 from l-Phe-l-Val, (l-Val-l-Phe)2 and (l-Val-l-Phe)3 from l-Val-l-Phe, and (l-Leu-l-Met)2 and (l-Leu-l-Met)3 from l-Leu-l-Met.  相似文献   

10.
Abstract

l-6-Hydroxynorleucine was synthesized from 2-keto-6-hydroxyhexanoic acid using branched-chain aminotransferase from Escherichia coli with l-glutamate as an amino donor. Since the branched-chain aminotransferase was severely inhibited by 2-ketoglutarate, the branched-chain aminotransferase reaction was coupled with aspartate aminotransferase and pyruvate decarboxylase. Aspartate aminotransferase converted the inhibitory 2-ketoglutarate back to l-glutamate by using l-aspartate as an amino donor. On the other hand, pyruvate decarboxylase further shifted the reaction equilibrium towards l-6-hydroxynorleucine through decarboxylation of pyruvate to acetaldehyde. The concerted action of the three enzymes significantly enhanced the yield compared to that of branched-chain aminotransferase alone. In the coupled reaction, 90.2 mM l-6-hydroxynorleucine (> 99% ee) was produced from 100 mM 2-keto-6-hydroxyhexanoic acid, whereas in a single branched-chain aminotransferase reaction only 22.5 mM l-6-hydroxynorleucine (> 99% ee) was produced.  相似文献   

11.
l-Sorbose metabolism in Pseudomonas aeruginosa IFO 3898 was studied. When the strain was cultivated in l-sorbose medium, l-idonic and 2-keto-l-gulonic acids were detected in the culture broth.

From the results on the metabolism of various sugars and sugar acids with the cell suspension and the metabolites accumulated, the following pathway was proposed for the l-sorbose metabolism in Ps. aeruginosa IFO 3898.

l-Sorbose → l-idose → l-idonic acid → 2-keto-l-gulonic acid.  相似文献   

12.
Streptoverticillium sp., strain No. K–52, isolated from a soil sample collected in Kumamoto City, was found to produce a new antibiotic, K–52A. From the results of taxonomic studies, strain No. K–52 was identified as a strain of Streptoverticillium roseoverticillatum subsp. albosporum (Thirumalachar) Locci, Baldacci and Petrolini Baldam 1969.

Antibiotic K–52A produced by this strain was thought to be a saccharide, and inhibited the growth of Gram-positive and Gram-negative bacteria, including Pseudomonas aeruginosa on a chemically defined medium. The growth inhibition was, however, reversed by l-glutamic acid, l-glutamine, l-asparatic acid or l-asparagine.  相似文献   

13.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

14.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

15.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

16.
A new antibiotic K-52B, different from K-52A, was isolated from the culture broth of Streptoverticillium roseoverticillatum subsp. albosporum, strain No. K-52. The antibiotic K-52B was thought to be a similar saccharide to K-52A from its physicochemical properties but differed from K-52A in the presence of nitrogen content. Antibiotic K-52B inhibited the growth of Gram-positive and Gram-negative bacteria, including Pseudomonas aeruginosa on a chemically defined medium. The growth inhibition was, however, reversed by l-glutamine, l-glutamic acid, l-asparagine and l-aspartic acid.  相似文献   

17.
Kinetic parameters of d-amino acid oxidase from R. gracilis (DAAO) towards d-2-naphthyl alanine (d-2-NAla) and of l-aspartate amino transferase (l-AAT) from Escherichia coli towards 2-naphthyl pyruvate (2-NPA) were measured. The two enzymes were then combined in a one-pot reaction in which DAAO was used to generate 2-NPA which was the substrate of l-AAT in the presence of cysteine sulphinic acid (CSA) as an amino donor. The combined reactions afforded enantiomerically pure l-2-NAla in almost quantitative yield. The extremely low water solubility of 2-NAla can be partially overcome by running the biotransformation in suspension with higher formal concentration. In these conditions multiple enzyme additions are required.  相似文献   

18.
An inducible tryptophanase was crystallized from the cell extract of Proteus rettgeri grown in a medium containing l-tryptophan. The purification procedure included ammonium sulfate fractionation, heat treatment, DEAE-Sephadex and hydroxylapatite column chromatographies. Crystals were obtained from solutions of the purified enzyme by the addition of ammonium sulfate.

The crystalline enzyme preparation was homogeneous by the criteria of ultracentrifugation and zone electrophoresis. The molecular weight was determined to be approximately 210,000.

The crystalline enzyme catalyzed the degradation of l-tryptophan into indole, pyruvate and ammonia in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from 5-hydroxy-l-tryptophan, 5-methyl-l-tryptophan, S-methyl-l-cysteine and l- cysteine. l-, d-Alanine, l-phenylalanine and indole inhibited pyruvate formation from these substrates.  相似文献   

19.
The effects on the polymorphic crystallization of l-glutamic acid were examined of many substances including amino acids, inorganic salts, surface active agents, and sodium salt or hydrochloride of l-glutamic acid, when contained in the mother liquor.

The co-existence of amino acids, especially of l-aspartic acid, l-phenylalanine, l-tyrosine, l-lcucine and l-cystine contributed to the crystallization of l-glutamic acid in α-form, and these amino acid showed an inhibitory action on the transition of α-crystals as the solid phase in the aqueous solution, to β-crystals.

In the presence of a large amount of l-glutamate or the hydrochloride at the time of nucleation of l-glutamic acid, mostly β-crystals appeared even in the presence of the amino acids named above.  相似文献   

20.
Most of the bacteria, which were examined for the sensitivity to l-arginine analogs (l-canavanine, l-homoarginine, d-arginine and arginine hydroxamate), were insensitive to the analogs at a concentration of 8 mg/ml. Corynebacterium glutamicum DSS-8 isolated as d-serine-sensitive mutant from an isoleucine auxotroph KY 10150, was found to be sensitive to d-arginine and arginine hydroxamate. Furthermore, DSS-8 produced l-arginine in a cultural medium. l-Arginine analog-resistant mutants were derived from DSS-8 by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) treatment. Most of them were found to produce a large amount of l-arginine. An isoleucine revertant from one of these mutants produced 19.6 mg/ml of l-arginine in the medium containing 15% (as sugar) of molasses.

The mechanism of the sensitivity to l-arginine analogs and that of the production of l-arginine in the d-serine-sensitive mutant, DSS-8, were investigated. DSS-8 seems to be a mutant having increased permeability to d- and l-arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号