首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sangavai  C.  Chellapandi  P. 《Amino acids》2019,51(9):1397-1407

Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography–mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone–butanol–ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.

  相似文献   

2.
When azelaic acid was used as a sole carbon source on the growth of Micrococcus sp. which was isolated from soil, intact cells of the organism catalyzed the enzymic condensation of fatty acids with hydroxylamine. Some of the characteristics of fatty acid hydroxamate formation were investigated.

The enzyme activity was tested with azelaic acid compared to other fatty acids. Azelylhydroxamate formation was activated with the addition of reduced glutathione or 2-mercaptoethanol. The reaction was inhibited by p-chloromercuribenzoate (PCMB), ethylene diamine tetraacetate (EDTA), NaF and benzoate.  相似文献   

3.
Clostridium thermocellum is a candidate organism for consolidated bioprocessing of lignocellulosic biomass into ethanol. However, commercial use is limited due to growth inhibition at modest ethanol concentrations. Recently, an ethanol-adapted strain of C. thermocellum was produced. Since ethanol adaptation in microorganisms has been linked to modification of membrane lipids, we tested the hypothesis that ethanol adaptation in C. thermocellum involves lipid modification by comparing the fatty acid composition and membrane anisotropy of wild-type and ethanol-adapted strains. Derivatization to fatty acid methyl esters provided quantitative lipid analysis. Compared to wild-type, the ethanol-adapted strain had a larger percentage of fatty acids with chain lengths >16:0 and showed a significant increase in the percentage of 16:0 plasmalogens. Structural identification of fatty acids was confirmed through mass spectral fragmentation patterns of picolinyl esters. Ethanol adaptation did not involve modification at sites of methyl branching or the unsaturation index. Comparison of steady-state fluorescence anisotropy experiments, in the absence and presence of ethanol, provided evidence for the effects of ethanol on membrane fluidity. In the presence of ethanol, both strains displayed increased fluidity by approximately 12%. These data support the model that ethanol adaptation was the result of fatty acid changes that increased membrane rigidity that counter-acted the fluidizing effect of ethanol.  相似文献   

4.
Zymobacter palmae gen. nov., sp. nov. was proposed for a new ethanol-fermenting bacterium that was isolated from palm sap in Okinawa Prefecture, Japan. The bacterium is gram-negative, facultatively anaerobic, catalase-positive, oxidase-negative, nonspore-forming and peritrichously flagellated. It requires nicotinic acid for growth. It ferments hexoses, -linked di- and tri-saccarides, and sugar alcohols (fructose, galactose, glucose, mannose, maltose, melibiose, saccharose, raffinose, mannitol and sorbitol). Fifteen percent of maltose in broth medium is effectively fermented, whereas glucose with a concentration higher than 10% delayed growth initiation and decreased growth rates. Maltose is fermented to produce ethanol and CO2 with a trace amount of acids. Approximately 2 mol of ethanol are produced from 1 mol moiety of hexose of maltose. The organism possesses ubiquinone-9. The G+C content of the DNA is 55.8+-0.4 mol%. Major cellular fatty acids were palmitic and oleic acids and cyclopropanic acid of C19:0. Characteristic hydroxylated acid was 3-hydroxy dodecanoic acid. The bacterium is distinct from other ethanol-fermenting bacteria belonging to the genera Zymomonas Kluyver and van Niel 1936 and Saccharobacter Yaping et al. 1990 with respect to chemotaxonomic and other phenotypic characters to warrant to compose a new genus and a new species. The type strain is strain T109 (= IAM 14233).Abbreviation IAM IAM Culture Collection, Institute of Applied Microbiology. The University of Tokyo  相似文献   

5.
Ethanol (1:1) extract of defatted soybean flour was fractionated systematically and the resulting phonolic acid fraction was investigated. This fraction had strong phenol-like flavor and contained at least seven phenolic acids including syringic, vanillic, ferulic, gentisic, salicylic, p-coumaric, and p-hydroxybenzoic acids. The main component among these was syringic acid, which was isolated as 3,5-dinitrobenzoate.

In addition, two isomers of chlorogenic acids, presumably isochlorogenic and chlorogenic acids approximately in a ratio of 1 : 10, were found in this extract. These substances have sour, bitter and astringent flavors.  相似文献   

6.
A gram positive, motile rod-shaped strictly anaerobic non sporulating bacterium was isolated from an enrichment initiated with mullet gut contents. The organism grew optimally at 30°C at pH 6.5 and at a salinity of 10/103. Out of a variety of mono-, di-, and polysaccharides tested only pectin, cellobiose and starch actively supported growth in either semi defined medium or peptone-yeast extract (PY) medium. Galacturonic acid and maltose were less effective as substrates. Mol product per 100 mol of pectin monomer degraded were: acetate, 163; ethanol, 30; methanol, 88 and formate, 48. Per 100 mol of hexose in cellobiose or starch degraded, the amounts were acetate, 39; ethanol, 128 and formate, 41. Hydrogen was not detectable in the incubations (detection limit, <10-5 atm) and propionate, butyrate, lactate or succinate were not produced as fermentation end-products (<2 mol per 100 mol monomer). The guanine plus cytosine content of DNA from the bacterium was 31 mol%, and the cell walls contained meso-diaminopimelic acid. A phylogenetic analysis of the organism by 16S rDNA sequencing and DNA-DNA homology indicated that the organism grouped more closely with several species of Clostridium than with Eubacterium. The phenotypic characteristics of the organism indicated that it did not fit within the genus Clostridium and more closely resembled Eubacterium. The organism is therefore designated as a species of Eubacterium; the type strain is P-1 (DSM 6788).  相似文献   

7.
Lipid components of a glycolipid, formerly designated as spot A, from the cells of Selenomonas ruminantium were investigated. The basic structure of this material had been previously shown to be β-glucosaminyl-l,6-glucosamine. The major component of O- and N-acyl side chains was β-OH C13:0 acid when the cells were grown with added valerate. Approximately 85 % of the total amide linked fatty acids was this compound. A considerable amount of C13:2 acid was also present as a component of O-acyl fatty acids. When the cells were grown in a glucose medium containing caproate, the major fatty acid component of the spot A compound was β-OH myristic and β-OH C13:0: acids. 14C-Valerate or 14C-caproate, supplemented to the glucose medium, was incorporated into O- and N-acyl linked fatty acid moieties of the spot A compound. It was also shown that the spot A compound was the lipid A component of lipopolysaccharides of this organism.  相似文献   

8.
A spoilage organism isolated from turbid beer is described. The bacterium was gram negative, catalase negative, strictly anaerobic, and rod shaped, having flagella only on one side of the cell. The main metabolic product was propionic acid. In addition acetic, succinic, and lactic acids and acetoin were formed. Malonate inhibited the production of propionic acid by the strain studied and by both Pectinatus and Propionibacterium strains. The guanine-plus-cytosine content of deoxyribonucleic acid was 36 mol%. Differences between this strain and Pectinatus strains were 2 to 5 percentage points. Immunofluorescent staining and gel diffusion precipitin tests revealed that the antigenic structure differed from those of Pectinatus strains. The isolated organism can, despite some differences, be regarded as belonging to the genus Pectinatus.  相似文献   

9.
During the course of the study on the production of biotin from desthiobiotin by microorganisms, the present authors have found that some strains of molds produced an unknown biotin-vitamer (BS-factor) from desthiobiotin. The present investigation was undertaken to clarify the characteristics of the unknown vitamer. The unknown vitamer produced from desthiobiotin was isolated in crystalline form from culture filtrate of Aspergillus oryzae. The compound isolated was identified as 4-methyl-5-(ω-carboxybutyl)-imidazolidone-2 by the physico-chemical procedures.

The biosynthesis of biotin-vitamers by resting cell system of Bacillus sphaericus was studied.

It was found that pimelic acid was essential substrate in biosynthesis of biotin-vitamers and that some amino acids and organic acids stimulated the biosynthesis of biotin-vitamers from pimelic acid. Alanine was found to be most effective. It was assumed that, in the presence of pimelic acid, some amino acids, especially alanine, and some organic acids play an important role in the biosynthesis of biotin-vitamers.

The main component of the biotin-vitamers synthesized by the resting cell system was identified as desthiobiotin. The existence of a small amount of unknown biotin-vitamer, an avidin-uncombinable substance, which was assumed to be 7-keto-8-amino-pelargonic acid, was also observed. True biotin was hardly observed in any conditions tested.  相似文献   

10.
A gram-positive, motile, rod-shaped, strictly anaerobic, sporulating bacterium was isolated from an enrichment initiated with mullet gut contents. The organism grew optimally at 30°C and pH6.5, and at a salinity of 1–103. Out of a variety of polysaccharides tested as growth substrates, only alginate supported growth in either semidefined or complex culture medium. The organism also grew on a variety of mono- and disaccharides. Moles product per 100mol of alginate monomer degraded were: acetate, 186; ethanol, 19; formate, 54; and CO2, 0.19. Moles product per 100mol of hexose in cellobiose or glucose degraded were: acetate, 135; ethanol,61; formate, 63: and CO2, 61. Hydrogen was not detectable during the incubations (detection limit, <10-5atm) and propionate, butyrate, lactate, or succinate were not produced as fermentation end products (<2 mol per 100 mol of monomer). The G+C content of DNA from the bacterium was 30.2±0.3 mol%, and the cell walls contained the peptidoglycan component meso-diaminopimelic acid. A phylogenetic analysis of the 16S rDNA sequence indicated that the organism grouped closely with members of the RNA-DNA homology group 1 of the genus Clostridium. However, it differed from other species of the genus with regard to morphology, growth temperature optimum, substrate range, and fermentation pattern and is therefore designated as a new species of Clostridium; the type strain is A-1 (DSM 8605).  相似文献   

11.
When Micrococcus sp. which was isolated from soil assimilated azelaic acid as a sole carbon source, cell-free extract of the organism catalyzed enzymic fatty acid hydroxamate formation. The enzyme was effective only for mono-carboxylic acid, but not for di-carboxylic acids such as azelaic acid. The activity was high with higher fatty acid such as oleic acid. Some of the properties of higher fatty acid hydroxamate formation were investigated.

Olelylhydroxamate was formed with the high concentration of hydroxylamine. The reaction was inhibited by PCMB, but recovered by the addition of SH-compounds (such as cysteine).

On the other hand, when methylacetate was used as a sole carbon source and cell-free extract of Micrococcus sp. hydrolyzed several fatty acid esters. The fatty acid hydroxamate degradation by esterolysis are also discussed.  相似文献   

12.
Summary From the anoxic zone of an oil shale leachate column three pyridine-degrading bacterial strains were isolated. Two strains were Gram-negative facultative anaerobic rods and one strain was a branched Gram-positive bacterium. The branched Gram-positive strain had the best pyridine-degrading ability. This organism was aerobic, non-motile, catalase positive, oxidase negative, and had no flagellum. The G+C content of the DNA was 66.5 mol%. The major menaquinone was MK-8(H2). The main cellular fatty acids were saturated and monounsaturated straight chains. This organism contained mycolic acid, meso-diaminopimelic acid, arabinogalactan and glycolyl residues in the cell wall. Due to morphological, physiological and chemotaxonomic characteristics this strain was placed in the genus Rhodococcus. The optimum culture conditions were as follows: temperature 32° C, pH 8.0 and 0.1% v/v of pyridine as sole carbon, energy and nitrogen source. Utilization of pyridine by a batch fermentor culture of Rhodococcus sp. was characterized by a specific growth rate of 0.13 h–1, growth yield of 0.61 mg cell·mg pyridine–1 and a doubling time of 5.3 h–1. Offprint requests to: S.-T. Lee  相似文献   

13.
The properties of het asparagine transport systems in Lactobacillus plantarum and Streptococcus faecalis are described. In both organisms the uptake of isotopically labeled l-asparagine was markedly stimulated by glucose. Kinetic studies yielded curvilinear Lineweaver-Burk plots in both organisms. These data were most consistently accounted for in both organisms by assuming the operation of two catalytic uptake components in addition to a diffusion component. The occasional limitation of kinetic studies in distinguishing between single or multiple catalytic components is illustrated. A large selection of structurally related amino acids and other substances were tested as competitors in initial rate studies. In L. plantarum the most effective competitors. structurally related dicarboxylic acid amide derivatives were only moderately effective competitors. In contrast, the most effective competitors of l-arparagine uptake in S. faecalis were relatively small neutral amino acids such as l-alanine, l-serine. laminobutyric acid, l-cysteine and l-methionine, suggesting that asparagine enters this organism by reaction with a catalyst having relatively unspecific structural discrimination among neutral amino acids. Both organisms rapidly converted a large proportion of the transported asparagine to aspartic acid. In S. faecalis, the deamidation of l-asparagine was shown to be relatively insensitive to inhibition by those amino acids which were most effective in reducing the asparagine entry rate.  相似文献   

14.
Burkholderia sp. IS-01 capable of biosynthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)] copolyesters with a high molar fraction of 3HV was isolated from the gut of the adult longicorn beetle, Moechotypa diphysis. The strain IS-01 was relatively tolerant to high concentrations of levulinic acid and accumulated a poly(13.5 mol% 3HB-co-86.5 mol% 3HV) copolyester when cultivated on a mixture of gluconate (20 g/L) and levulinic acid (12.5 g/L). In this case, the content of the copolyester in the cells was approximately 60.0%. The compositions of the copolyesters were easily regulated by altering the molar ratio of gluconate and levulinic acid in the medium. The organism was found to possess a class I PHA synthase (PhaC) gene (1,881 bp) that encodes a protein with a deduced molecular mass of 68,538 Da that consists of 626 amino acids. The PhaC of this organism was most similar to that of B. cenocepacia PC184 (92% similarity).  相似文献   

15.
The strains S3 and F11 which were isolated respectively from static and submerged tanks for vinegar production were identified as Acetobacter rancens. Neither strain grew in an ammonium defined medium containing ethanol, glucose, glycerol or organic acids as the sole carbon source. When casamino acids were added, they grew luxuriantly with lactate, ethanol or glycerol as the carbon source and less well with acetate or glucose. They grew, forming much acetic acid, in defined ethanol medium when alanine was supplied in place of casamino acids, but strain S3 showed a longer lag time than strain Fl1. This lag time could be shortened by addition of aspartate and glutamate. These amino acids could be replaced by succinate, fumarate, malate, lactate, pyruvate or propionate but not by glucose. Both strains required lactate or pyruvate in defined glucose medium but many other organic acids, which were effective in defined ethanol medium, were ineffective or slightly effective in glucose medium.  相似文献   

16.
The present study was undertaken to select the most preferred deproteinizing agent for microbiological or chromatographic determination of free amino acids in plasma. The highest quantities of amino acids were obtained from samples treated with picric acid, ethanol or sulfosalicylic acid. It was also found from examining the recoveries of 14C-labeled amino acids added to plasma following treatment with picric acid, ethanol and sulfosalicylic acid that one kind of deproteinizing agent is not equally effective with all amino acids. Picric acid treatment gave the most reliable results for determination of amino acids except the basic amino acids, alanine and tryptophan. Sulfosalicylic acid was the most recommended deproteinizing agent for basic amino acids and ethanol was good for the assay of alanine and tryptophan. The response of d-amino acids to the deproteinizing agents tested was not always similar to that of their l-isomers.  相似文献   

17.
The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids. We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).  相似文献   

18.
An improved method is described for separating saturated fatty acids by reversed-phase paper chromatography. The 2,4-dinitrophenylhydrazides prepared from saturated fatty acids from C2 to C22 are run upward on paper impregnated with tetralin, using 90% methanol—acetic acid—tetralin, 80% ethanol—acetic acid—tetralin, or 90% methanol—tetralin as the moving solvent. The simultaneous separations of all even-carbon acids from C6 to C22, all odd-carbon acids from C7 to C19, and also all odd- and even-carbon acids from C7 to C19 can be successfully performed by means of this paper chromatography. The method is useful for the detection of component saturated fatty acids in natural fats.  相似文献   

19.
为了筛选分离入侵植物猫爪藤的细胞毒活性成分,采用MTT法以75%乙醇提取物的不同组分分别处理人肝癌细胞SMMC7721、Bel7402和正常肝细胞Chang Liver,对他们的体外增殖抑制率进行了研究。结果表明,总醇提物的氯仿组分对肝癌细胞表现出明显的体外增殖抑制作用,其次是石油醚组分。从氯仿萃取组分中分离出具有更强细胞毒活性的成分熊果酸。因此,入侵植物猫爪藤具有体外细胞毒活性,熊果酸是其体外细胞毒活性的主要成分之一。  相似文献   

20.
A ninhydrin-positive, phosphorus-negative lipid from Paracoccus denitrificans ATCC 13543 has been isolated and purified by mild alkaline methanolysis followed by silicic acid column chromatography and preparative thin-layer chromatography. The lipid was identified as an ornithine-containing lipid. The major ester-linked fatty acid was cis vaccenic acid. Major amide-linked fatty acids were 3-OH-20:1 and 3-OH-18:0. Ornithine-containing lipid was a major lipid component of P. denitrificans. Phospholipids made up about 57% and ornithine-containing lipid about 14% of the weight of the total lipid of the organism. The ratios of lipid ornithine: lipid phosphorus were 0.23, 0.65 and 0.58 in cytoplasmic membrane, outer membrane, and an NaCl extract, which is thought to represent chiefly outer membrane, respectively. Thus ornithine-containing lipid appears to be present in larger amounts in outer membrane than cytoplasmic membrane. No substantial variations in lipid ornithine levels were noted in stationary phase versus exposnential phase organisms, organisms grown in complex medium versus organisms grown in minimal medium with and without amino acid supplements, or in organisms grown in low phosphate-containing medium.Non standard abbreviations TLC thin-layer chromatography - Tris-HCl tris(hydroxymethyl)aminomethane hydrochloride - TMS trimethylsilyl - TFA triluoroacetyl - NPPN ninhydrin-positive, phosphorus-negative - ECL equivalent chain length  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号