首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The availability of engineered serine proteases allows one to study the activation, substrate specificity and regulation of human coagulation and fibrinolytic activities. Human coagulation factor XII is composed of the protease catalytic region at the C-terminus, a hinge proline-rich region and regulatory domains at the N-terminus. From cDNA clones coding for factor XII, two DNA molecules were constructed, one being full length and the other being deleted of exons coding for the regulatory domains. Engineered factor-XII cDNA species were inserted by a homologous recombination technique into vaccinia viruses, which were used to infect the human hepatoma cell line HepG2. Two recombinant proteins were prepared from the culture media and identified by their antigenic properties and electrophoretic mobilities. The recombinant protein of larger size was identified as the full-length factor XII of 80 kDa and its specific activities and activation patterns, determined both by the coagulation and the amidolytic assays, are very similar to these of native human factor XII. The recombinant protein of smaller size was identified as a 319-amino-acid-deleted factor-XII protein of 32 kDa, containing only the entire protease region and part of the proline-rich hinge. This protein was expected to be the 'minimal' portion of factor XII able to sustain protease but unable to recognize substrates and surfaces necessary to activate the contact phase of coagulation. However, this 'minimal' factor-XII protein displays a marked protease activity and, although lacking five regulatory domains of factor XII, is bound and activated by negative charges and promotes coagulation with high efficiency.  相似文献   

2.
The amyloid precursor protein (APP) is a ubiquitously expressed transmembrane adhesion protein and the progenitor of amyloid-β peptides. The major splice isoforms of APP expressed by most tissues contain a Kunitz protease inhibitor domain; secreted APP containing this domain is also known as protease nexin 2 and potently inhibits serine proteases, including trypsin and coagulation factors. The atypical human trypsin isoform mesotrypsin is resistant to inhibition by most protein protease inhibitors and cleaves some inhibitors at a substantially accelerated rate. Here, in a proteomic screen to identify potential physiological substrates of mesotrypsin, we find that APP/protease nexin 2 is selectively cleaved by mesotrypsin within the Kunitz protease inhibitor domain. In studies employing the recombinant Kunitz domain of APP (APPI), we show that mesotrypsin cleaves selectively at the Arg15-Ala16 reactive site bond, with kinetic constants approaching those of other proteases toward highly specific protein substrates. Finally, we show that cleavage of APPI compromises its inhibition of other serine proteases, including cationic trypsin and factor XIa, by 2 orders of magnitude. Because APP/protease nexin 2 and mesotrypsin are coexpressed in a number of tissues, we suggest that processing by mesotrypsin may ablate the protease inhibitory function of APP/protease nexin 2 in vivo and may also modulate other activities of APP/protease nexin 2 that involve the Kunitz domain.  相似文献   

3.
BackgroundFactor XII (FXII) is a serine protease that is involved in activation of the intrinsic blood coagulation, the kallikrein-kinin system and the complement cascade. Although the binding of FXII to the cell surface has been demonstrated, the consequence of this event for proteolytic processing of membrane-anchored proteins has never been described.MethodsThe effect of FXII on the proteolytic processing of the low-density lipoprotein receptor-related protein 1 (LRP1) ectodomain was tested in human primary lung fibroblasts (hLF), alveolar macrophages (hAM) and in human precision cut lung slices (hPCLS). The identity of generated LRP1 fragments was confirmed by MALDI-TOF-MS. Activity of FXII and gelatinases was measured by S-2302 hydrolysis and zymography, respectively.ResultsHere, we demonstrate a new function of FXII, namely its ability to process LRP1 extracellular domain. Incubation of hLF, hAM, or hPCLS with FXII resulted in the accumulation of LRP1 ectodomain fragments in conditioned media. This effect was independent of metalloproteases and required FXII proteolytic activity. Binding of FXII to hLF surface induced its conversion to FXIIa and protected FXIIa against inactivation by a broad spectrum of serine protease inhibitors. Preincubation of hLF with collagenase I impaired FXII activation and, in consequence, LRP1 cleavage. FXII-triggered LRP1 processing was associated with the accumulation of gelatinases (MMP-2 and MMP-9) in conditioned media.ConclusionsFXII controls LRP1 levels and function at the plasma membrane by modulating processing of its ectodomain.General significanceFXII-dependent proteolytic processing of LRP1 may exacerbate extracellular proteolysis and thus promote pathological tissue remodeling.  相似文献   

4.

Background

EspP (E. coli secreted serine protease, large plasmid encoded) is an extracellular serine protease produced by enterohemorrhagic E. coli (EHEC) O157:H7, a causative agent of diarrhea-associated Hemolytic Uremic Syndrome (D+HUS). The mechanism by which EHEC induces D+HUS has not been fully elucidated.

Objectives

We investigated the effects of EspP on clot formation and lysis in human blood.

Methods

Human whole blood and plasma were incubated with EspPWT at various concentrations and sampled at various time points. Thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (aPTT), coagulation factor activities, and thrombelastgraphy (TEG) were measured.

Results and Conclusions

Human whole blood or plasma incubated with EspPWT was found to have prolonged PT, aPTT, and TT. Furthermore, human whole blood or plasma incubated with EspPWT had reduced activities of coagulation factors V, VII, VIII, and XII, as well as prothrombin. EspP did not alter the activities of coagulation factors IX, X, or XI. When analyzed by whole blood TEG, EspP decreased the maximum amplitude of the clot, and increased the clot lysis. Our results indicate that EspP alters hemostasis in vitro by decreasing the activities of coagulation factors V, VII, VIII, and XII, and of prothrombin, by reducing the clot strength and accelerating fibrinolysis, and provide further evidence of a functional role for this protease in the virulence of EHEC and the development of D+HUS.  相似文献   

5.
Backbone 1H, 13C and 15N resonance assignments are presented for the extracellular domain of tissue factor. Tissue factor is the integral membrane protein that initiates blood coagulation through the formation an enzymatic complex with the plasma serine protease, factor VIIa.  相似文献   

6.
Human blood coagulation factor XII (FXII; 80 kDa) contains a C-terminal serine protease zymogen domain, which becomes activated upon contacting a negative surface. Activated FXII (alphaFXIIa) brings about reciprocal activation of FXII and kallikrein that by further hydrolysis produces the free catalytic domain (betaFXIIa; 28 kDa). Increased levels of alphaFXIIa are associated with coronary heart disease, sepsis, and diabetes. Biophysical investigation of the structural basis of activation, substrate specificity, and regulation of FXII requires an efficient bacterial system for producing the wild-type and mutant recombinant proteins. Here, the cDNA of the zymogen domain of FXII (betaFXII) was cloned into the pET-28a(+) vector and the plasmid was transformed into Escherichia coli strain BL21 (DE3) and overexpressed. The multi-disulfide, recombinant protein, His(6)-betaFXII (rbetaFXII), expressed as an inclusion body, was purified by means of a Ni(2+)-charged resin. The matrix-bound rbetaFXII was subjected to refolding with the glutathione redox system and activated by the in vivo activator, kallikrein. The active form, rbetaFXIIa, obtained in milligram quantities, exhibited similar structural and comparable functional properties relative to human betaFXIIa, as indicated by circular dichroism spectroscopy and kinetics of substrate hydrolysis. Thermodynamics of enzyme:inhibitor complex formation, including the expected 1:1 stoichiometry, was determined for rbetaFXIIa by isothermal calorimetric titration with a specific recombinant protein inhibitor, Cucurbita maxima trypsin inhibitor-V (rCMTI-V; 7kDa).  相似文献   

7.
Triggered self-activation of factor XII, a blood coagulation protease, was utilized for the amplified visual detection of ss-DNA targets in a non-sequence specific way. Factor XII holds potential as a low-affinity and therefore non-interfering probe for DNA secondary structure and for the screening of protein binding to ss-DNA. The observation that ss-DNA also accelerates coagulation of human blood plasma is relevant to the emerging field of aptamer therapeutics.  相似文献   

8.
Isocoumarins are potent mechanism-based heterocyclic irreversible inhibitors for a variety of serine proteases. Most serine proteases are inhibited by the general serine protease inhibitor 3,4-dichloroisocoumarin, whereas isocoumarins containing hydrophobic 7-acylamino groups are potent inhibitors for human leukocyte elastase and those containing 7-alkylureidogroups are inhibitors for procine pancreatic elastase. Isocoumarins containing basic side chains that resemble arginine are potent inhibitors for trypsin-like enzymes. A number of 3-alkoxy-4-chloro-7-guanidinoisocoumarins are potent inhibitors of bovine thrombin, human factor Xa, human factor XIa, human factor XIIa, human plasma kallikrein, porcine pancreatic kallikrein, and bovine trypsin. Another cathionic derivative, 4-chloro-3-(2-isothiureidoethoxy) isocoumarin, is less reactive toward many of these enzymes but is an extremely potent inhibitor of human plasma kallikrein. Several guanidinoisocoumarins have been tested as anticoagulants in human plasma and are effective at prolonging the prothrombin time. The mechanism of inhibition by this class of heterocyclic inactivators involves formation of an acyl enzyme by reaction of the active site serine with the isocoumarin carbonyl group. Isocoumarins with 7-amino or 7-guanidino groups will then decompose further to quinone imine methide intermediates, which react further with an active site residue (probably His-57) to form stable inhibited enzyme derivatives. Isocoumarins should be useful in further investigations of the physiological function of serine proteases and may have future therapeutic utility for the treatment of emphysema and coagulation disorders.  相似文献   

9.
Lucilia sericata larvae are used in maggot debridement therapy, a traditional wound healing approach that has recently been approved for the treatment of chronic wounds. Maggot excretion products (MEP) contain many different proteases that promote disinfection, debridement and the acceleration of wound healing, e.g. by activating the host contact phase/intrinsic pathway of coagulation. In order to characterise relevant procoagulant proteases, we analysed MEP and identified a chymotrypsin-like serine protease with similarities to Jonah proteases from Drosophila melanogaster and a chymotrypsin from Lucilia cuprina. A recombinant form of the L. sericata Jonah chymotrypsin was produced in Escherichia coli. The activated enzyme (Jonahm) had a pH optimum of 8.0 and a temperature optimum of 37 °C, based on the cleavage of the chromogenic peptide s-7388 and casein. Jonahm reduced the clotting time of human plasma even in the absence of the endogenous protease kallikrein, factor XI or factor XII and digested the extracellular matrix proteins fibronectin, laminin and collagen IV, suggesting a potential mechanism of wound debridement. Based on these characteristics, the novel L. sericata chymotrypsin-like serine protease appears to be an ideal candidate for the development of topical drugs for wound healing applications.  相似文献   

10.
11.
Blood coagulation factor XII (FXII, Hageman factor) is a plasma serine protease which is autoactivated following contact with negatively charged surfaces in a reaction involving plasma kallikrein and high-molecular-weight kininogen (contact phase activation). Active FXII has the ability to initiate blood clotting via the intrinsic pathway of coagulation and inflammatory reactions via the kallikrein-kinin system. Here we have determined FXII-mediated bradykinin formation and clotting in plasma. Western blotting analysis with specific antibodies against various parts of the contact factors revealed that limited activation of FXII is sufficient to promote plasma kallikrein activation, resulting in the conversion of high-molecular-weight kininogen and bradykinin generation. The presence of platelets significantly promoted FXII-initiated bradykinin formation. Similarly, in vitro clotting assays revealed that platelets critically promoted FXII-driven thrombin and fibrin formation. In summary, our data suggest that FXII-initiated protease cascades may proceed on platelet surfaces, with implications for inflammation and clotting.  相似文献   

12.
Abstract

Dynorphin-converting activity was recently discovered in human cerebrospinal fluid.1 This enzyme (hCSF-DCE) cleaves dynorphin A, dynorphin B and alpha-neoendorphin to release Leu-enkephalin-Arg6. To characterize the enzyme further we used several protease inhibitors, including N-peptidyl-O-acyl hydroxylamines which are known to act as potent irreversible inhibitors of serine and cysteine proteinases.2-4

No irreversible inactivation occurred but strong, reversible effects on the dynorphin-converting activity by some of the inhibitors tested could be observed. Although, hCSF-DCE binds its substrates (dynorphin A and B) in the μM-mM concentration range, it exhibits high specificity in recognizing and cleaving the linkage between the two basic amino acids in the substrate sequence.  相似文献   

13.
P Wildgoose  K L Berkner  W Kisiel 《Biochemistry》1990,29(13):3413-3420
Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg152-Ile153. Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, we have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg152----Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. Purified mutant factor VII was indistinguishable from plasma-derived or recombinant wild-type factor VII by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and migrated as a single band with an apparent molecular weight of 50,000. The average specific activity of several mutant factor VII preparations was 0.00025 unit/micrograms, or 0.01% of that observed for recombinant wild-type factor VII preparations. The clotting activity of mutant factor VII was, however, completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
PA3535 (EprS), an autotransporter (AT) protein of Pseudomonas aeruginosa, is predicted to contain a serine protease motif. The eprS encodes a 104.5 kDa protein with a 30‐amino‐acid‐long signal peptide, a 51.2 kDa amino‐terminal secreted passenger domain and a 50.1 kDa carboxyl‐terminal outer membrane channel formed translocator. Although the majority of AT proteins have been reported to be virulence factors, little is known about the functions of EprS in the pathogenicity of P. aeruginosa. In this study, we performed functional analyses of recombinant EprS secreted by Escherichia coli. The proteolytic activity of EprS was markedly decreased by changing Ser to Ala at position 308 or by serine protease inhibitors. EprS preferred to cleave substrates that terminated with arginine or lysine residues. Thus, these results indicate that EprS, a serine protease, displays the substrate specificity, cleaving after basic residues. We demonstrated that EprS activates NF‐κB‐driven promoters through protease‐activated receptor (PAR)‐1, ‐2 or ‐4 and induces IL‐8 production through PAR‐2 in a human bronchiole epithelial cell line. Moreover, EprS cleaved the peptides corresponding to the tethered ligand region of PAR‐1, ‐2 and ‐4 at a specific site with exposure oftheir tethered ligands. Collectively, these results suggest that EprS activates host inflammatory responses through PARs.  相似文献   

15.
Bacillus nematocida is a Gram-positive bacterium capable of killing nematodes. Our recent studies identified an extracellular serine protease Bace16 in B. nematocida as a candidate of pathogenic factor in the infection against nematodes, which displayed a high similarity with the serine protease family subtilisin BPN’, and the MEROPS ID is S08.034. To further confirm the roles that bace16 played in the mechanism of nematocidal pathogenesis, recombinant mature Bace16 (rm-Bace16) was expressed in Escherichia coli strain BL21 using pET-30 vector system. Bioassay experiments demonstrated that the purified recombinant protease had the ability to degrade nematode cuticles and kill nematodes. In addition, a bace16 knockout mutant of B. nematocida constructed by homologous recombination showed considerably lower proteolytic activity and less than 50% nematocidal activity than the wild-type strain. These results confirmed that Bace16 could serve as an important virulence factor during the infectious process. Qiuhong Niu and Xiaowei Huang contributed equally to this work.  相似文献   

16.
Infestins are Kazal-type serine protease inhibitors described in the midgut of Triatoma infestans, Chagas disease vector. Of all infestins, only infestin 1R (INF1R) does not control host blood coagulation, due to its inhibitory specificity for chymotrypsin-like proteases. We further investigated the effect of INF1R on cell infection by Trypanosoma cruzi. The importance of INF1R reactive site to inhibit T. cruzi cell invasion was confirmed using 1RSFTI, a synthetic cyclic peptide containing the inhibitor reactive site region hybridized to the Sunflower Trypsin Inhibitor-1 (SFTI-1). Our results suggest that INF1R efficiently inhibited parasite cell invasion. For the first time, a serine protease inhibitor, derived from T. infestans, was shown to impair cell invasion by T. cruzi, representing possible new target in parasite cell invasion.  相似文献   

17.
Abstract

A series of benzenesulfonamide derivatives, bearing benzimidazole moieties, were designed and synthesized as inhibitors of carbonic anhydrases (CAs). Their binding affinities to recombinant human CA isozymes I, II, VII, XII and XIII were determined by the thermal shift assay. A group of compounds containing a benzimidazole substituent in the para position of the benzenesulfonamide ring was found to exhibit higher binding potency toward tested CAs than meta-substituted benzenesulfonamides. Some of these compounds exhibited nanomolar affinities and selectivity toward the CA isozymes tested.  相似文献   

18.
19.
Fibrinolysis is a process responsible for the dissolution of formed thrombi to re‐establish blood flow after thrombus formation. Plasminogen activator inhibitor‐1 (PAI‐1) inhibits urokinase‐type and tissue‐type plasminogen activator (uPA and tPA) and is the major negative regulator of fibrinolysis. Inhibition of PAI‐1 activity prevents thrombosis and accelerates fibrinolysis. However, a specific antagonist of PAI‐1 is currently unavailable for therapeutic use. We screened a panel of uPA variants with mutations at and near the active site to maximize their binding to PAI‐1 and identified a potent PAI‐1 antagonist, PAItrap. PAItrap is the serine protease domain of urokinase containing active‐site mutation (S195A) and four additional mutations (G37bR–R217L–C122A–N145Q). PAItrap inhibits human recombinant PAI‐1 with high potency (Kd = 0.15 nM) and high specificity. In vitro using human plasma, PAItrap showed significant thrombolytic activity by inhibiting endogenous PAI‐1. In addition, PAItrap inhibits both human and murine PAI‐1, allowing the evaluation in murine models. In vivo, using a laser‐induced thrombosis mouse model in which thrombus formation and fibrinolysis are monitored by intravital microscopy, PAItrap reduced fibrin generation and inhibited platelet accumulation following vascular injury. Therefore, this work demonstrates the feasibility to generate PAI‐1 inhibitors using inactivated urokinase.  相似文献   

20.
The coagulation cascade that occurs in mammalian plasma involves a large number of plasma proteins that participate in a stepwise manner and eventually give rise to the formation of thrombin. This enzyme then converts fibrinogen to an insoluble fibrin clot. This series of reactions involves a number of glycoproteins that particupate as enzymes as well as cofactors. These proteins that circulate in the blood in a precursor or zymogen form are multifunctional proteins that share many common segments or domains. One group includes the vitamin K-dependent glycoproteins (prothrombin, factor IX, factor X, and protein C) that show considerable homology in both their amino acid sequences and their gene structures. The proteins that participate in the contact or early phase of the blood coagulation cascade include plasma prekallikrein, factor XII, and factor IX. The amino-terminal regions of both factor XI and plasma prekallikrein contain four tandem repeats of about 90 amino acids, and these tandem repeats show considerable amino acid sequence homology. Factor XII contains four different domains in the amino-terminai region of the protein, including a kringle structure, two growth factor domains, and type I and type II finger domains. The finger domains were first identified in fibronectin. The carboxyl-terminal portion of plasma prekallikrein, factor XII, and factor XI contains the serine or protease portion of the molecule. These various plasma proteins that share common domains appear to have evolved by gene shuffling that may have, in some cases, involved introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号