首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourteen new O, O-dialkyl N-[4-(N-heteroarylsulfamoyl)phosphoramidothioate having thiazoles and oxadiazoles as heteroaryl moieties have been synthesised. They have been tested against two species of fungi and their fungicidal activities have been compared with those of two commercial fungicides, viz., Dithane M-45 and Bavistin.  相似文献   

2.
Luz C  Netto MC  Rocha LF 《Mycopathologia》2007,164(1):39-47
The effect of five fungicides, benomyl (1 mg/l), dodine (50 mg/l), manzate (100 mg/l), cupric sulphate (200 mg/l) and thiabendazole (4 mg/l) was tested under in␣vitro conditions on development of 15 isolates of fungi pathogenic for insects and␣other invertebrates (Beauveria brongniartii, Culicinomyces clavisporus, Duddingtonia flagrans, Hirsutella thompsonii, two Metarhizium anisopliae, Nomuraea rileyi, two Isaria/Paecilomyces spp., and Sporothrix insectorum) and 13 isolates of contaminant fungi (five Aspergillus spp., Cladosporium cladosporioides, Cunninghamella echinulata, Fusarium roseum, Gliocladium sp., Mortierella isabellina, Mucor plumbeus, Rhizopus arrhizus and Trichothecium roseum) originating mostly from tree-hole breeding sites of mosquitoes. Most pathogenic and contaminant fungi had clear patterns of susceptibility or resistance to tested concentration of the fungicide. Development of both pathogenic and contaminant fungi on fungicide-supplemented medium varied among fungi and fungicides tested. Minimal inhibition of pathogenic fungi was found for cupric sulphate, benomyl, dodine, thiabendazole < manzate. The highest inhibition of contaminants was obtained with thiabendazole > benomyl and dodine > manzate and cupric sulphate. Thiabendazole was the most appropriate fungicide to isolate fungi pathogenic to invertebrates from substrates with high water contents and rich in organic material. The results underline the importance of adapting both a fungicide and its concentration for a selective medium for isolating specific target fungi and while selecting against possible contaminants.  相似文献   

3.
A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide‐potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi.  相似文献   

4.
The influence of 15 commercially available fungicides on the germination, growth and virulence of Metarhizium anisopliae, Beauveria bassiana, Isaria fumosorosea, and Lecanillium longisporum was evaluated. The influence of the fungicides on conidial germination was dependant on the fungicide type and dose. Most fungicides retarded conidial germination of all the fungi tested at 10× and at the recommended rate of application, however, their toxicity declined at lower concentrations. Most of the fungicides inhibited mycelial growth of B. bassiana, whereas L. longisporum growth was unaffected. Only two and eight fungicides influenced mycelial growth of I. fumosorosea and M. anisopliae, respectively. None of the fungicides influenced the virulence of B. bassiana and L. longisporum, however, tolylfluanid and azoxystrobin reduced the virulence of M. anisopliae and I. fumosorosea, respectively. These studies clearly show that certain fungicides have the potential to inhibit germination of entomopathogenic fungi in vitro but appear to have little or no effect on their virulence against target insects.  相似文献   

5.
S Nemec 《Plant and Soil》1985,84(1):133-137
Summary Four sterol inhibiting fungicides, two general biocides, and three nonfumigant nematicides were tested for their activity against the mycorrhizal fungi,Glomus intraradicas orG. mosseae. Of the four fungicides, propiconazole was the most inhibitory and triforine the least. These fungicides act systemically, and directly on the fungus in soil. One of the biocides, methylenebis-thiocyanate was toxic toG. mosseae, the other Bis-bromoacetoxy-2-Butene was not. All nematicides, aldicarb, fenamiphos and fensulfothion, had little or no inhibitory effect on the fungi.This paper reports the results of research only. Mention of a pesticide in this paper does not constitute a recommendation by the U.S. Department of Agriculture nor does it imply registration under FIFRA.  相似文献   

6.
Cercospora leaf spot of sugar beet, caused by the fungus Cercospora beticola, is a major foliar pathogen on sugar beet. Fungicide sprays have been used extensively to manage Cercospora leaf spot, including the benzimidazole fungicides. Resistance to benzimidazoles has been observed in isolates of C. beticola. The precise genetics of this resistance is not known in this fungus. We tested benzimidazole‐tolerant and ‐sensitive isolates and found a single mutation in the β‐tubulin gene of benzimidazole‐tolerant isolates that corresponds to a mutation known to confer benzimidazole tolerance in other ascomycetes. This mutation is predicted to cause a change from glutamic acid to alanine in the protein product. Isolates containing this mutation further show an increased sensitivity to an N‐phenylcarbamate, as would be predicted based on the mutant phenotype found in other filamentous fungi. Only a single mutation was found in isolates from different regions of the United States, isolated in different growing seasons.  相似文献   

7.
M. P. Haware 《Mycopathologia》1971,43(3-4):343-345
Five varieties ofPisum sativum L. were tested for seedborne fungi. Tests were conducted by standard International Seed Testing methods. It was observed that fungi likeAlternaria, Aspergillus, Rhizopus, Mucor andFusarium were associated with all the five varieties tested.Fusarium andRhizopus were dominant in all the varieties. They were also responsible for reduction in germination percentage of seeds. Early December was selected for testing the efficacy of certain fungicides (namely, Agrosan G.N., Ceresan, Copper carbonate, Tafasan, Tillex, Stardex and Sulphur) against seedborne fungi ofPisum sativum L., Agrosan G.N. and Ceresan gave the better control of seedborne pathogens without any adverse effect on germination.  相似文献   

8.
The systemic fungicides dimethirimol and ethirimol were shown to be toxic to spores of Erysiphe graminis and Sphaerotheca fuliginea, in germination tests in vitro. Toxicity of dimethirimol to spores of Botrytis fabae, Phytophthora infestans, Puccinia recondita, Uncinula necator and Venturia inaequalis was relatively feeble or absent. When applied in foliage sprays or in root treatments, both compounds inhibited the emergence of germ tubes from powdery mildew spores on cucumber and barley plants. The specific disease control shown by these fungicides can be explained by their direct fungitoxic action. The effects of dimethirimol and ethirimol on powdery mildew infections and on spore germination were greatly decreased by the presence of riboflavin in the light. A rapid photo-chemical interaction between riboflavin and dimethirimol was demonstrated. Marked reversals both of disease control and of fungitoxicity were also given by folic acid, and it is suggested that folic acid overcomes a metabolic block induced in powdery mildew fungi by the fungicides.  相似文献   

9.
10.
Five formulations of four benzimidazole derived fungicides, carbendazim, benomyl, thiophanate methyl and methyl 4-[2-(2-dimethylamino acetamide) phenyl]-3-thioallophanate were compared for their toxicity towards two pathogenic isolates of Rhizoctonia solani and three of R. bataticola. The isolates of two fungi showed significant differences in mycelial growth inhibition by the five fungicides. Benomyl and carbendazim were most inhibitory to all isolates of both fungi while the sesame isolate of R. bataticola was least sensitive to all fungicides. Disease control (90%) was obtained with low concentrations of benomyl against root rot of cowpea caused by R. solani, and with thiophanate methyl against root rot of sesame and sunflower, and leaf blight of mung bean caused by R. bataticola. The spread of stalk-end rot of sunflower heads was best checked with a spray of thiophanate methyl. The results suggest that benzimidazole fungicides having similar toxophores act differently for disease control in different host-parasite combinations.  相似文献   

11.
We recently compiled a complete list of phosphorelay signal transduction components in the model filamentous fungus Aspergillus nidulans. In this study, we characterized a histidine protein kinase (designated NikA) that is found in many fungi, with special reference to responses to potent fungicides (iprodione and fludioxonil). We provided evidence that not only NikA, but also two downstream response regulators (SskA and SrrA) are crucially implicated in the mode of action of these fungicides, and also that the further downstream HogA-MAPK cascade is exaggerated abnormally (or ectopically) in hyphae by the fungicides in a manner dependent on the NikA-SskA phosphorelay.  相似文献   

12.
We evaluated the protection afforded by an oil formulation against non-compatible fungicides in mixtures with conidia of the entomopathogenic fungi Metarhizium anisopliae (Ma) and Beauveria bassiana (Bb). Under laboratory conditions, viability of unformulated (aqueous suspensions) Ma conidia was harmed by recommended label doses of carbendazim (not tested for Bb), and both Ma and Bb conidia were affected by triadimefon. On the other hand, effect of fungicides was usually nil or minimal on conidia formulated as oil-containing suspensions (emulsifiable oil + water). Germination rates for unformulated and oil-formulated Ma conidia subjected to carbendazim were reduced by 77.3 and 12.1%, respectively, compared to their fungicide-free counterparts. Germination rates at 16 h post-inoculation for unformulated and oil-formulated Bb conidia subjected to triadimefon were reduced by 20.5 and 5.5%, respectively, compared to their fungicide-free counterparts. No differences were observed at 20 h post inoculation, indicating a fungistatic action of this compound on Bb conidia. Virulence of unformulated conidia amended with fungicides against third instar Diatraea saccharalis larvae was negatively affected compared to their formulated counterparts. These results suggest that oil-formulated conidia can be effectively protected from damage caused by chemicals, which could have applications in tank mixing or alternate applications with shared spraying equipment, being especially relevant for IPM programs in which mycopesticides and chemicals are simultaneously sprayed.  相似文献   

13.
14.
Enantiomeric separations of N‐phthaloyl (N‐PHT), N‐tetrachlorophthaloyl (N‐TCPHT), and N‐naphthaloyl (N‐NPHT) α‐amino acids and their esters were examined on several kinds of polysaccharide‐derived chiral stationary phases (CSPs). Resolution capability of CSPs was greater Chiralcel OF than the others for N‐PHT and N‐NPHT α‐amino acids and their esters. In N‐TCPHT α‐amino acids and their esters, good enantioselectivities showed Chiralcel OG for N‐TCPHT α‐amino acids, Chiralpak AD for N‐TCPHT α‐amino acid methyl esters, and Chiralcel OD for N‐TCPHT α‐amino acid ethyl esters, respectively. From the results of liquid chromatography and computational chemistry, it is concluded that l ‐form is preferred and more retained with electrostatic interaction in case of interaction between N‐PHT α‐amino acid derivatives and Chiralcel OF, N‐TCPHT α‐amino acid derivatives and Chiralcel OD, and N‐NPHT α‐amino acid derivatives and Chiracel OF. On the other hand, d ‐form is preferred and more retained with van der Waals interaction in case of interaction between N‐TCPHT α‐amino acid ester derivatives and Chiralcel OG and Chiralpak AD. Chirality 24:1037–1046, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The antifungal activity of 37 N-(methoxy-substituted benzoyl)anthranilic esters was tested on the powdery mildew of barley caused by Erysiphe graminis by the pot test. Among the methyl N-(methoxy-substituted benzoyl)anthranilates tested, 3,4-dimethoxybenzoyl derivative exhibited the highest activity. The variation in fungicidal activity of N-(3,4-dimethoxybenzoyl)anthranilic esters was shown to be related with variation in hydrophobicity and the electronic property of the alcohol moiety of the ester. The branching at the α-position of the alcohol moiety of the ester was detrimental to the activity.  相似文献   

16.
Using nematophagous fungi for the biological control of animal parasitic nematodes will become one of the most promising strategies in the search for alternative chemical drugs. The purpose of this study was to check the in vitro activity of four anthelmintics, four chemical fungicides and two antifungal drugs on the spore germination of nematophagous fungi: Duddingtonia flagrans (SF170), Arthrobotrys oligospora (447), Arthrobotrys superba (435) and Arthrobotrys sp. (PS011). A modified 24-well cell culture plate assay was conducted to evaluate the susceptibility of nematophagous fungi against drugs tested by calculating the effective middle concentrations (EC50) of each tested drug to inhibit the germination of fungal spores. EC50 ranged between 0·7 and 47·2 μg ml−1 for fenbendazole, thiabendazole and ivermectin, except levamisole (546·5–4057·8 μg ml−1). EC50 of tested fungicides was 0·6–2·3 μg ml−1 for carbendazim, 55·9–247·4 μg ml−1 for metalaxyl, 24·4–45·2 μg ml−1 for difenoconazole, and 555·9–1438·3 μg ml−1 for pentachloronitrobenzene (PCNB). EC50 of two antifungal drugs was 0·03–3·4 μg ml−1 for amphotericin B and 0·3–10·9 μg ml−1 for ketoconazole. The results showed that 10 tested drugs, except for levamisole and PCNB, had in vitro inhibitory effects on nematophagous fungi. The chlamydospores of Dflagrans had the highest sensitivity to nine tested drugs, except for ketoconazole.  相似文献   

17.
The efficiency of some inducer resistance chemicals (IRCs) like bion, chitosan, humic acid and salicylic acid as well as the fungicides like Folu-Gold, Galben Copper, Previcure-N and Redomil Gold Mancozeb on management of sweet melon downy mildew, caused by Pseudoperonospora cubensis was evaluated in vitro and in vivo. Also, the efficiency of the alternation between the sprayed two fungicides and IRCs on management of the disease and the produced fruit yield and its total soluble solids (TSS) under field conditions were assessed. The inhibitory effect of the IRCs and the tested fungicides on sporangial germination of P. cubensis resulted in a significant reduction in the germinated sporangia. In addition, IRCs were less effective than the fungicides. Disease management revealed the same trend of the in vitro experiment when they sprayed fungicides on sweet melon plants artificially inoculated with the sporangia of the causal fungus under greenhouse conditions. Furthermore, under field conditions, spraying sweet melon plants with the two tested fungicides was the most efficient in decreasing the disease and increasing fruit yield and its TSS, to somewhat, followed by the alternation between them and the tested IRCs. In addition, IRCs treatments showed the lowest efficiency in this regard.  相似文献   

18.
Colletotrichum gloeosporioides and Pestalotia psidii were found to be the dominant pathogens causing leaf spots and fruit diseases of guava. Effects of two fungicides in rainy (wet) and four fungicides in the winter (dry and cool) seasons separately, in concentrations of 500, 1500 and 3000 mg a.i. I?1 (ppm) have been investigated on the pathogens and on composite phylloplane fungi. Benomyl was found most effective against the population of pathogens and checked disease development. However, it was effective only at the schedule of three successive foliar applications. The application of captan did not check P. psidii as effectively as benomyl but it had a marked adverse effect on many of the phylloplane fungi. A signif, icant decrease in the number of fungal species colonizing mancozeb and dichlone-treated leaves was observed. Lesion measurement and spore germination tests against both pathogens following chemical treatments in vivo and in vitro respectively have also been made.  相似文献   

19.
This study identified the main pathogens causing fruit rots of mature peaches in northern Greece, the major peach producing area of Greece. The brown rot pathogen Monilinia laxa was responsible for approximately 70% and 78% of rotted peaches in 2005 and 2006 respectively. Serious damage (up to 5%) was also caused with the fungus Phomopsis amygdali. Other pathogens isolated from rotted peaches at a low percentage were Alternaria alternata, Aspergillus niger, Aspergillus flavus, Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium spp., Colletotrichum gloeosporioides, Rhizopus stolonifer and Gilbertella persicaria. Most fungal isolates originated from the rotted peaches were tested for their sensitivity to the fungicides iprodione, carbendazim, thiophanate methyl and tebuconazole at label recommended concentrations. All fungicides inhibited the growth of M. laxa, A. niger, A. flavus, S. sclerotiorum, P. amygdali and B. cinerea on poisoned agar. Apart from iprodione, all other fungicides inhibited the mycelium growth of the pathogen Fusarium sp. The mycelium growth of Fusarium sp. was significantly less with iprodione than control. Only iprodione and tebuconazole were effective against A. alternata and R. stolonifer. Tebuconazole inhibited the mycelium growth of R. stolonifer, while iprodione reduced significantly in comparison to control. The mycelium growth of the fungus C. gloeosporioides was inhibited by tebuconazole and reduced significantly by the fungicides thiophanate methyl, carbendazim and iprodione. Among all the fungi tested, only M. laxa and B. cinerea isolates were found resistant to benzimidazoles [the EC50 (50% effective concentration) value was 100–200 mg/l and 200–300 mg/l for the largest number of thiophanate methyl‐ and carbendazim‐resistant M. laxa isolates respectively, while the biggest number of B. cinerea thiophanate methyl‐ and carbendazim‐resistant isolates showed EC50 value 200–300 mg/l and 300–400 mg/l, respectively]. However, these strains were sensitive to tebuconazole and iprodione. Therefore, these fungicides can be used as an alternative method to control benzimidazole‐resistant Monilinia and Botrytis isolates.  相似文献   

20.
Fungal cell wall degrading enzymes produced by the biocontrol fungiTrichoderma harzianum andGliocladium virens are strong inhibitors of spore germination and hyphal elongation of a number of phytopathogenic fungi. The purified enzymes include chitinolytic enzymes with different modes of action or different substrate specificity and glucanolytic enzymes with exo-activity. A variety of synergistic interactions were found when different enzymes were combined or associated with biotic or abiotic antifungal agents. The levels of inhibition obtained by using enzyme combinations were, in some cases, comparable with commercial fungicides. Moreover, the antifungal interaction between enzymes and common fungicides allowed the reduction of the chemical doses up to 200-fold. Chitinolytic and glucanolytic enzymes fromT. harzianum were able to improve substantially the antifungal ability of a biocontrol strain ofEnterobacter cloacae. DNA fragments containing genes encoding for different chitinolytic enzymes were isolated from a cDNA library ofT. harzianum and cloned for mechanistic studies and biocontrol purposes. Our results provide additional information on the role of lytic enzymes in processes of biocontrol and strongly suggest the use of lytic enzymes and their genes for biological control of plant diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号