共查询到20条相似文献,搜索用时 15 毫秒
1.
Byeong Tak Jeon Rok Won Heo Hyun Joo Shin Chin-ok Yi Yu Hee Lee Han-nah Joung 《Bioscience, biotechnology, and biochemistry》2013,77(3):482-489
A Vigna nakashimae (VN) extract has been shown to have antidiabetic and anti-obesity effects. However, the mechanism underlying the effect of a VN extract on hepatic inflammation and endoplasmic reticulum (ER) stress remains unclear. In the present study, we investigated how a VN extract protects against the development of non-alcoholic fatty liver disease (NAFLD). A VN extract for 12 weeks reduced the body weight, serum metabolic parameters, cytokines, and hepatic steatosis in high-fat diet (HFD)-fed mice. A VN extract decreased HFD-induced hepatic acetyl CoA carboxylase and glucose transporter 4 expressions. In addition to the levels of high-mobility group box 1 and receptor for advanced glycation, the hepatic expression of ATF4 and caspase-3 was also reduced by a VN extract. Thus, these data indicate that a chronic VN extract prevented NAFLD through multiple mechanisms, including inflammation, ER stress, and apoptosis in the liver. 相似文献
2.
Some enzymatic properties and substrate specificities of the two peptidoglutaminases (peptidoglutaminase-I (PGase-I) and II (PGase-II) isolated from Bacillus circulans were investigated.The both resembled each other with respect to optimum pH and temperature for their activities, susceptibility to various reagents and effects of many metal ions. But, the pH-rate profile of PGase-II was more broad than that of PGase-I. Thermal stability of PGase-I was better than that of PGase-II at a degree of about 5°C.However, they were definitively different each other with respect to their substrate specificities. PGase-I specifically deamidated the γ-amide of L-glutamine residing at the carboxyl terminal on peptides, and was inactive to glutamine derivative substituted at both α-amino and α-carboxyl groups. On the other hand, the best substrate for PGase-II was tri-peptides, X-Gln-Y, where X was carbobenzoxy-,t-amyloxycarbonxy- or amino acid residues, and Y was amino acids. Though L-glutamine presented in polypeptide chains composed of more than four amino acid residues was a poor substrate, two L-glutamines in oxidized insulin A chain were well attacked by the enzyme.The both PGase were inactive to asparagine and asparaginyl peptides. 相似文献
3.
《Bioscience, biotechnology, and biochemistry》2013,77(12):2470-2474
β2 integrins (CD11s/CD18) promote the attachment of leukocytes to vascular endothelial cells. We performed in this study sucrose loading to rats with moderate postprandial hyperglycemia with/without once-daily dosing of the α-glucosidase inhibitor, miglitol, for 4 days under 4-h fasting conditions. The streptozotocin (STZ)-treated rats showed moderate postprandial hyperglycemia on days 1 and 4. The gene expression was higher for CD11a with fasting and 3-h postprandial on day 1, and with fasting on day 4, for CD11b with fasting on day 1 and 3-h postprandial on day 4, and for CD18 with fasting on days 1 and 4 in peripheral leukocytes from the STZ-treated rats than in peripheral leukocytes from the saline-treated rats. Miglitol reduced postprandial hyperglycemia and the gene expression of CD11a with fasting and of CD11b 3-h postprandial on day 4. These results indicate that inhibiting postprandial hyperglycemia reduced the mRNA expression of β2 integrins in peripheral leukocytes of moderately postprandial hyperglycemic rats. 相似文献
4.
Xiaowei Wei Nan Gu Nan Feng Xiaohui Guo 《Journal of enzyme inhibition and medicinal chemistry》2018,33(1):1494-1500
The p38 mitogen-activated protein kinase (MAPK) pathway is involved in endoplasmic reticulum stress (ERS) and inflammation, which may play an important role in the pathogenesis of type 2 diabetes (T2DM). This study aimed to investigate whether p38 MAPK contributes to the pathogenesis of T2DM. 6-week-old female db/db mice were randomly assigned to Dmo and Dmi groups, and C57 mice were assigned as controls. The Dmi group was gavaged with the p38 MAPK inhibitor SB203580 for 9?weeks, and the effects on β cell dysfunction and apoptosis were investigated. db/db mice showed higher food intake, body mass, fasting glucose, and plasma insulin levels than C57 mice. After SB203580 administration, blood glucose was significantly lower. HOMA β and HOMA IR were improved. Islet mRNA expression levels of the ERS markers were lower. P38 MAPK inhibition reduced blood glucose and improved β cell function, at least in part by reducing β cell apoptosis. 相似文献
5.
6.
Endophytic fungi, especially from mangrove plants, are rich source of secondary metabolites, which plays a major role in various pharmacological actions preferably in cancer and bacterial infections. To perceive its role in antidiabetic activity we isolated and tested the metabolites derived from a novel strain Alternaria longipes strain VITN14G obtained from mangrove plant Avicennia officinalis. The crude extract was analyzed for antidiabetic activity and subjected to column chromatography. The isolated fractions were screened in vitro for α-glucosidase and α-amylase inhibitory activities. The cytotoxicity of the isolated fractions was studied on L929 cell lines. Following which, the screened fraction 2 was allowed for structure elucidation using gas chromatography-mass spectrometry, one-dimensional, two-dimensional nuclear magnetic resonance spectroscopy, ultraviolet, and Fourier-transform infrared analysis. The binding energies of the isolated fraction 2 with glycolytic enzymes were calculated by molecular docking studies using AutoDock Vina. The isolated fraction 2 identified as 2,4,6-triphenylaniline, showed no significant difference in α-amylase inhibition rates and a significant difference of 10% in α-glucosidase inhibition rates than that of the standard drug acarbose. Further, the cytotoxicity assay of the isolated fraction 2 resulted in a cell viability of 73.96%. Supportingly, in silico studies showed 2,4,6-triphenylaniline to produce a stronger binding affinity toward the glycolytic enzyme targets. The compound 2,4,6-triphenylaniline isolated from A. longipes strain VITN14G exhibited satisfactory antidiabetic activity for type 2 diabetes in vitro, which will further be confirmed by in vivo studies. Successful outcome of the study will result in a natural substitute for existing synthetic antidiabetic drugs. 相似文献
7.
真核细胞中的内质网是蛋白质合成、翻译和转运的场所,当内质网稳态被打破,出现蛋白质折叠障碍或错误折叠,并导致蛋白质过度积累时,便会引发内质网应激反应,即未折叠蛋白反应。大量的研究表明,内质网应激与2 型糖尿病的病理特征有一定的关系,而转录激活因子6 通路作为未折叠蛋白反应中3 条信号通路之一,调控着蛋白质的重折叠过程,对缓解内质网应激以及在糖脂代谢和胰岛素敏感性方面起着重要作用。简介内质网应激反应及相关信号通路和转录激活因子6,着重综述转录激活因子6 在肝脏糖脂代谢和胰岛素抵抗中的作用及相应机制,探讨其成为抗2 型糖尿病药物新靶点的可能性,为抗2 型糖尿病药物的研发提供新思路。 相似文献
8.
Akira Isogai Akinori Suzuki Saburo Tamura Shigeo Murakoshi Yuji Ohashi Yoshio Sasada 《Bioscience, biotechnology, and biochemistry》2013,77(11):2305-2306
A bacterium isolated as resistant to alkyldimethylbenzylammonium chloride (benzalkonium chloride, BC) and tentatively identified as Enterobacter cloacae, was induced by BC to produce acidic polysaccharide. The optimum concentration of BC for production of the polysaccharide was 0.1% and the polysaccharide produced amounted to 1.0-2.0 mg per ml of culture broth. The best carbon and nitrogen sources for the polysaccharide production were glycerol and polypeptone.The acidic polysaccharide was consisted of fucose, galactose, glucose, glucuronic acid, pyruvate, and acetate, like colanic acid. The production of the acidic polysaccharide was not induced by the addition of trimethylbenzylammonium chloride and tetramethylammonium chloride, but it was induced by p-fluorophenylalanine, and the results are discussed. 相似文献
9.
肾脏疾病的防治一直是医学研究的重点。真核翻译起始因子2α激酶(eIF2α)是哺乳动物细胞中代谢应激反应的关键因子,可诱导整体蛋白质翻译抑制,并在不同的细胞代谢应激下控制细胞存活。eIF2α激酶在维持机体的正常生理功能方面及肿瘤、免疫和代谢相关疾病等的发生发展过程中发挥重要作用。研究提示eIF2α激酶可能参与多种肾脏疾病的病理过程,因此,本文对eIF2α激酶家族及其在肾脏疾病中的可能作用等方面的研究进展进行归纳总结,以期为肾脏疾病的防治提供新的参考和理论依据。 相似文献
10.
Haruna Kaneta Mina Koda Shun Saito Masaya Imoto Manabu Kawada Yoko Yamazaki 《Bioscience, biotechnology, and biochemistry》2016,80(4):774-778
Four unique isoflavone aglycones (barpisoflavone A (1), 2′-hydroxygenistein (2), 5-methylgenistein (3), and gerontoisoflavone A (4)) whose structures were related to genistein were prepared from the tuber of Apios americana Medik. We examined the estrogen receptor and androgen receptor binding activities, estrogen agonistic activities, antioxidant activities, and α-glucosidase inhibitory activities of 1–4. The results obtained showed that 2 possessed potent and 1, 3, and 4 possessed moderate estrogen partial agonistic activities, 1 and 2 possessed moderate antioxidant activities, and 2 and 3 possessed moderate α-glucosidase inhibitory activities. 相似文献
11.
Hanada S Harada M Abe M Akiba J Sakata M Kwan R Taniguchi E Kawaguchi T Koga H Nagata E Ueno T Sata M 《The journal of histochemistry and cytochemistry》2012,60(6):475-483
Mallory-Denk bodies (MDBs) are hepatocyte cytoplasmic inclusions found in several liver diseases and consist primarily of the cytoskeletal proteins, keratins 8 and 18 (K8/K18). Recent evidence indicates that the extent of stress-induced protein misfolding, a K8>K18 overexpression state, and transglutaminase-2 activation promote MDB formation. In addition, the genetic background and gender play an important role in mouse MDB formation, but the effect of aging on this process is unknown. Given that oxidative stress increases with aging, the authors hypothesized that aging predisposes to MDB formation. They used an established mouse MDB model-namely, feeding non-transgenic male FVB/N mice (1, 3, and 8 months old) with 3,5 diethoxycarbonyl-1,4-dihydrocollidine for 2 months. MDB formation was assessed using immunofluorescence staining and biochemically by demonstrating keratin and ubiquitin-containing crosslinks generated by transglutaminase-2. Immunofluorescence staining showed that old mice had a significant increase in MDB formation compared with young mice. MDB formation paralleled the generation of high molecular weight ubiquitinated keratin-containing complexes and induction of p62. Old mouse livers had increased oxidative stress. In addition, 20S proteasome activity and autophagy were decreased, and endoplasmic reticulum stress was increased in older livers. Therefore, aging predisposes to experimental MDB formation, possibly by decreased activity of protein degradation machinery. 相似文献
12.
We have recently shown that the crosstalk between mild endoplasmic reticulum (ER) stress and low concentrations of the pro-inflammatory cytokine interleukin (IL)-1β exacerbates beta cell inflammatory responses via the IRE1α/XBP1 pathway. We presently investigated whether mild ER stress also sensitizes beta cells to cytokine-induced apoptosis. Cyclopiazonic acid (CPA)-induced ER stress enhanced the IL-1β apoptosis in INS-1E and primary rat beta cells. This was not prevented by XBP1 knockdown (KD), indicating the dissociation between the pathways leading to inflammation and cell death. Analysis of the role of pro- and anti-apoptotic proteins in cytokine-induced apoptosis indicated a central role for the pro-apoptotic BH3 (Bcl-2 homology 3)-only protein Bim (Bcl-2-interacting mediator of cell death), which was counteracted by four anti-apoptotic Bcl-2 (B-cell lymphoma-2) proteins, namely Bcl-2, Bcl-XL, Mcl-1 and A1. CPA+IL-1β-induced beta cell apoptosis was accompanied by increased expression of Bim, particularly the most pro-apoptotic variant, small isoform of Bim (BimS), and decreased expression of A1. Bim silencing protected against CPA+IL-1β-induced apoptosis, whereas A1 KD aggravated cell death. Bim inhibition protected against cell death caused by A1 silencing under all conditions studied. In conclusion, mild ER stress predisposes beta cells to the pro-apoptotic effects of IL-1β by disrupting the balance between pro- and anti-apoptotic Bcl-2 proteins. These findings link ER stress to exacerbated apoptosis during islet inflammation and provide potential mechanistic targets for beta cell protection, namely downregulation of Bim and upregulation of A1. 相似文献
13.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(2):176-180
The anti-hyperglycaemic effects of the leaves of Acer pycnanthum K. Koch, and the purification and identification of the active compounds were investigated. Extracts of the leaves showed a potent inhibitory effect on the α-glucosidase in both in vivo and in vitro experiments. The fractionation of the crude extract gave two active compounds, ginnalin B (6-O-galloyl-1,5-anhydro-D-glucitol) and ginnalin C (2-O-galloyl-1,5-anhydro-D-glucitol), by spectroscopic analysis. This is the first report that A. pycnanthum and its constituents may be useful for the prevention or treatment of diabetes mellitus. 相似文献
14.
Akira Takatsuki Masanobu Munekata Makoto Nishimura Kenji Kohno Kazukiyo Onodera Gakuzo Tamura 《Bioscience, biotechnology, and biochemistry》2013,77(9):1831-1834
The manufacturing processes used determined the physicochemical properties of the three kinds of rice food, garaeduk, bagsulgi, and cooked rice. The initial rate of hydrolysis by porcine pancreatic α-amylase (PPA) was affected by the food form. The firmer structure of garaeduk was apparently responsible for the difficulty in maceration, resulting in less digestion than with easily digestible food for the same maceration time. The initial rate of hydrolysis of each rice product by PPA increased with increasing maceration time in a Waring Blender for all of the processed rice products. The postprandial glucose and insulin responses to the three processed rice products were also studied in ten patients with type 2 diabetes mellitus (4 men and 6 women aged 56.8±2.3 yr; duration of diabetes, 3.6±1.2 yr; body mass index (BMI), 23.7±2.6 kg/m2; fasting serum glucose, 143.9±5.1 mg/dl; serum insulin, 20.8±2.2 μU/ml). Each subject ingested of the three rice foods after a 12-h overnight fast, and the serum glucose and insulin levels were measured over a 0–240 min period. The postprandial serum glucose and insulin levels at 90 min after ingesting bagsulgi and cooked rice were less than those at 60 min, while the levels at 90 min after ingesting garaeduk were higher than those at 60 min. Garaeduk also significantly decreased the incremental responses of glucose and insulin when compared with bagsulgi and cooked rice. The results suggest that garaeduk would be the most unlikely to increase the postprandial serum glucose and insulin levels among the three rice foods. The food form, which eventually differentiated each food by its specific surface area with the same degree of maceration because of the characteristic physical strength, therefore affected the rate of rice starch hydrolysis both in vitro and in vivo. 相似文献
15.
16.
《Free radical research》2013,47(10):1223-1231
AbstractCurcumin is used anecdotally as an herb in traditional Indian and Chinese medicine. In the present study, the effects and possible mechanism of curcumin in experimental autoimmune myocarditis (EAM) rats were further investigated. They were divided randomly into a treatment and vehicle group, and orally administrated curcumin (50 mg/kg/day) and 1% gum arabic, respectively, for 3 weeks after myosin injection. The results showed that curcumin significantly suppressed the myocardial protein expression of inducible nitric oxide synthase (iNOS) and the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. In addition, curcumin significantly decreased myocardial endoplasmic reticulum (ER) stress signaling proteins and improved cardiac function. Furthermore, curcumin significantly decreased the key regulators or inducers of apoptosis. In summary, our results indicate that curcumin has the potential to protect EAM by modulating cardiac oxidative and ER stress-mediated apoptosis, and provides a novel therapeutic strategy for autoimmune myocarditis. 相似文献
17.
内质网应激条件下血管内皮细胞生长因子在人脑微血管内皮细胞中的表达 总被引:1,自引:0,他引:1
为观察内质网应激条件下血管内皮细胞生长因子的表达情况,用不同浓度的衣霉素处理体外培养的人脑微血管内皮细胞,建立内质网应激模型,采用RT—PCR、蛋白质免疫印迹以及免疫细胞化学的方法检测了细胞内血管内皮细胞生长因子的表达。结果发现血管内皮细胞生长因子在人脑微血管内皮细胞中存在一定的表达;内质网应激可诱导血管内皮细胞生长因子表达升高,随着衣霉素浓度的增高,血管内皮细胞生长因子的表达逐渐增加,与mRNA水平相比,血管内皮细胞生长因子蛋白量的增加更明显。实验结果提示人脑微血管内皮细胞中存在血管内皮细胞生长因子自分泌,血管内皮细胞生长因子可能是内质网应激的靶基因。 相似文献
18.
Jung-Yeon Kim Yongjoon Kim Geun-Hee Kwak Su Young Oh Hwa-Young Kim 《Acta biochimica et biophysica Sinica》2014,(5):415-419
MsrA and MsrB catalyze the reduction of methionine-S- suifoxide and methionine-R-sulfoxide, respectively, to methionine in different cellular compartments of mammalian cells. One of the three MsrBs, MsrB3, is an endoplasmic reticulum (ER)-type enzyme critical for stress resistance including oxidative and ER stresses. However, there is no evidence for the presence of an ER-type MsrA or the ER local- ization of MsrA. In this work, we developed an ER-targeted recombinant MsrA construct and investigated the potential effects of methionine-S-sulfoxide reduction in the ER on stress resistance. The ER-targeted MsrA construct contained the N-terminal ER-targeting signal peptide of human MsrB3A (MSPRRSLPRPLSLCLSLCLCLCLAAALGSAQ) and the C-terminal ER-retention signal sequence (KAEL). The over-expression of ER-targeted MsrA significantly increased cellular resistance to H202-induced oxidative stress. The ER-targeted MsrA over-expression also significantly enhanced resistance to dithiothreitol-induced ER stress; however, it had no positive effects on the resistance to ER stresses induced by tunicamycin and thapsigargin. Collectively, our data suggest that methionine-S-sulfoxide reduction in the ER compartment plays a protective role against oxidative and ER stresses. 相似文献
19.
Xiangnan Zhang Yang Yuan Lei Jiang Jingying Zhang Jieqiong Gao Zhe Shen Yanrong Zheng Tian Deng Haijing Yan Wenlu Li Wei-Wei Hou Jianxin Lu Yao Shen Haibing Dai Wei-Wei Hu Zhuohua Zhang Zhong Chen 《Autophagy》2014,10(10):1801-1813
Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2+/− mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation. 相似文献
20.
The diffusion of type 2 diabetes (T2D) throughout the world represents one of the most important health problems of this century. Patients suffering from this disease can currently be treated with numerous oral anti-hyperglycaemic drugs, but none is capable of reproducing the physiological action of insulin and, in several cases, they induce severe side effects. Developing new anti-diabetic drugs remains one of the most urgent challenges of the pharmaceutical industry. Multi-target drugs could offer new therapeutic opportunities for the treatment of T2D, and the reported data on type 2 diabetic mice models indicate that these drugs could be more effective and have fewer side effects than mono-target drugs. α-Glucosidases and Protein Tyrosine Phosphatase 1B (PTP1B) are considered important targets for the treatment of T2D: the first digest oligo- and disaccharides in the gut, while the latter regulates the insulin-signaling pathway. With the aim of generating new drugs able to target both enzymes, we synthesized a series of bifunctional compounds bearing both a nitro aromatic group and an iminosugar moiety. The results of tests carried out both in vitro and in a cell-based model, show that these bifunctional compounds maintain activity on both target enzymes and, more importantly, show a good insulin-mimetic activity, increasing phosphorylation levels of Akt in the absence of insulin stimulation. These compounds could be used to develop a new generation of anti-hyperglycemic drugs useful for the treatment of patients affected by T2D. 相似文献