首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction conditions for the production of l-tryptophan from dl-5-indolyl- methylhydantoin by Flavobacterium sp. AJ-3940, and the cultural conditions for the formation of the enzyme involved by this bacterium were investigated. The optimal pH of this reaction was around 8.5 and the optimal temperature was between 45 to 55°C. The amount of l-tryptophan produced was remarkably increased by the addition of inosine, which formed a water insoluble adduct with l-tryptophan, to the reaction mixture because of the release of end-product inhibition by l-tryptophan. This enzyme was inducibly and intracellularly produced by Flavobacterium sp. AJ-3940 in proportion to the increase in cell growth. Cells showing high activity were obtained using a medium containing 5 g glucose, 5 g (NH4)2SO4, 1 g KH2PO4, 3 g K2HPO4, 0.1 g MgSO4 · 7H2O, 0.01 g CaCl2 · 2H2O, 50 ml corn steep liquor and 3.5 g dl-5-indolylmethylhydantoin in a total volume of 1 liter (pH 7.0). Under the best conditions, 43 mg/ml of l-tryptophan was produced from 50 mg/ml of dl-5-indolylmethylhydantoin with a molar yield of 97% in the presence of cells of Flavobacterium sp. AJ-3940. In addition, other l-aromatic amino acids such as l-phenylalanine, l-tyrosine, l-DOPA and related l-amino acids were also produced from the corresponding 5-substituted hydantoins by this bacterium containing the l-tryptophan-producing enzyme induced by dl-5-indolylmethylhydantoin.  相似文献   

2.
The formation of aromatic l-amino acid decarboxylase in bacteria was studied with intact cells in a reaction mixture containing the aromatic l-amino acids, 3,4-dihydroxy-l-phenyl-alanine, l-tyrosine, l-phenylalanine, l-tryptophan and 5-hydroxy-l-tryptophan. Activity was widely distributed in such genera as Achromobacter, Micrococcus, Staphylococcus and Sarcina. Bacterial strains belonging to the Micrococcaceae showed especially high decarboxylase activity toward l-tryptophan, 5-hydroxy-l-tryptophan and l-phenylalanine. M. percitreus AJ 1065 was selected as a promising source of aromatic l-amino acid decarboxylase. Results of experiments with this bacterium showed that the aromatic amine formed from l-tryptophan by the enzymatic method was identical with tryptamine. M. percitreus constitutively produced an enzyme which exhibited decarboxylase activity toward l-tryptophan. However, when large amounts of the aromatic l-amino acids listed above or the tryptamine formed from l-tryptophan were added, enzyme formation was repressed.

Cells with high enzyme activity were prepared by cultivating this bacterium at 30°C for 24 hr in a medium containing 0.5% glycerol, 0.5% yeast extract, 0.5% Polypepton, 3.0 vol % soybean protein hydrolyzate, 0.1% KH2PO4, 0.1% MgSO4 · 7H2O, 0.001% FeSO4 · 7H2O and 0.001% MnSO4 · 5H2O in tap water (pH 8.0).  相似文献   

3.
The protease from Streptomyces cellulosae formed more turbidity in a 16% soybean protein hydrolysate in the initial stage of the reaction than α-chymotrypsin did, when the proteolytic activity of the protease was same as that of α-chymotrypsin. In highly concentrated solutions (2.5%) of various dipeptides, oligopeptides were produced by condensation by the protease. The oligopeptides formed were (l-Leu-Gly)2 and (l-Leu-Gly)3 from l-Leu-Gly, (l-Phe-l-Val)2 from l-Phe-l-Val, (l-Val-l-Phe)2 and (l-Val-l-Phe)3 from l-Val-l-Phe, and (l-Leu-l-Met)2 and (l-Leu-l-Met)3 from l-Leu-l-Met.  相似文献   

4.
Sulfated polysaccharides (SP) isolated from freshwater green algae, Spirogyra neglecta (Hassall) Kützing, and fractionated SPs were examined to investigate their molecular characteristics and immunomodulatory activity. The crude and fractionated SPs (F1, F2, and F3) consisted mostly of carbohydrates (68.5–85.3%), uronic acids (3.2–4.9%), and sulfates (2.2–12.2%) with various amounts of proteins (2.6–17.1%). d-galactose (23.5–27.3%), d-glucose (11.5–24.8%), l-fucose (19.0–26.7%), and l-rhamnose (16.4–18.3%) were the major monosaccharide units of these SPs with different levels of l-arabinose (3.0–9.4%), d-xylose (4.6–9.8%), and d-mannose (0.4–2.3%). The SPs contained two sub-fractions with molecular weights (Mw) ranging from 164 × 103 to 1460 × 103 g/mol. The crude and fractionated SPs strongly stimulated murine macrophages, producing considerable amounts of nitric oxide and various cytokines via up-regulation of their mRNA expression by activation of nuclear factor-kappa B and mitogen-activated protein kinases pathways. The main backbone of the most immunoenhancing SP was (1→3)-l-Fucopyranoside, (1→4,6)-d-Glucopyranoside, and (1→4)-d-Galactopyranoside.  相似文献   

5.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

6.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

7.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

8.
The synthesis of a new series of Nα-benzyloxycarbonyl (Z)-amino acid and Z-dipeptide chloromethyl ketone derivatives is described. The new derivatives are as follows; Z-l-Leu-CH2Cl, Z-l-Phe (N02)-CH2Cl, Z-l-Tyr (Bzl)-CH2Cl, Z-l-Tyr (Z)-CH2Cl, Z-l-Tyr-CH2Cl, Z-l-Glu (Me)-CH2Cl, Z-l-Phe-l-Leu-CH2Cl, Z-l-Tyr-l-Leu-CH3Cl, Z-l-Leu-l-Phe-CH2Cl, Z-l-Leu-l-Tyr-CH2Cl, Z-l-G1U (Me)-l-Tyr-CH2Cl, Z-l-G1U (Me)-l-Phe-CH2Cl.  相似文献   

9.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

10.
d-xylose and l-arabinose are the major constituents of plant lignocelluloses, and the related fungal metabolic pathways have been extensively examined. Although Pichia stipitis CBS 6054 grows using d-arabinose as the sole carbon source, the hypothetical pathway has not yet been clarified at the molecular level. We herein purified NAD(P)H-dependent d-arabinose reductase from cells grown on d-arabinose, and found that the enzyme was identical to the known d-xylose reductase (XR). The enzyme activity of XR with d-arabinose was previously reported to be only 1% that with d-xylose. The kcat/Km value with d-arabinose (1.27 min?1 mM?1), which was determined using the recombinant enzyme, was 13.6- and 10.5-fold lower than those with l-arabinose and d-xylose, respectively. Among the 34 putative sugar transporters from P. stipitis, only seven genes exhibited uptake ability not only for d-arabinose, but also for d-glucose and other pentose sugars including d-xylose and l-arabinose in Saccharomyces cerevisiae.  相似文献   

11.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

12.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

13.
Two auxotrophic mutants of Corynebacterium glutamicum were found to produce a large amount of l-proline in the culture medium. High concentration of MgSO4 or MnSO4 in the medium stimulated the l-proline production by an isoleucine auxotroph. Optimum concentration of l-isoleucine was 200 μg/ml, and the higher concentration of l-isoleucine reduced the l-proline production. The auxotroph produced 14.8 mg/ml of l-proline when cultured in a medium containing 12% glucose, 1.7% NH4C1,0.6% MgSO4·7H2O, 0.06% MnSO4·4H2O and 200 μg/ml of l-isoleucine. The other mutant, whose growth responds to the bases of nucleic acids, produced 7 to 13 mg/ml of l-proline in a cane molasses (15%, as glucose concentration)-medium containing 2% of the acid-hydrolyzate of soybean meal. The l-proline production by this mutant increased to a level of 27 to 31 mg/ml when the growth was suppressed by the addition of 4% NH4C1 to the medium, or by the addition of 2 mg/ml of polyoxyethylenestearylamine, a surfactant, to a culture at an appropriate stage of the fermentation.  相似文献   

14.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

15.
A thiaisoleucine-resistant mutant, ASAT–372, derived from a threonine producer of Corynebacterium glutamicum, KY 10501, produced 5 mg/ml each of l-isoleucine and l-threonine. l-Isoleucine productivity of ASAT–372 was improved stepwise, with concurrent decrease in threonine production, by successively endowing it with resistivity to such substances as ethionine, 4-azaleucine and α-aminobutyric acid. The mutant strain finally selected, RAM–83, produced 9.7 mg/ml of l-isoleucine with a medium containing 10% (as sugar) molasses.

l-Isoleucine production was significantly affected by the concentration of ammonium sulfate in the fermentation medium. At 4% ammonium sulfate l-isoleucine production was enhanced whereas l-threonine production was suppressed. At 2% ammonium sulfate l-threonine production was stimulated while l-isoleucine production decreased.  相似文献   

16.
The protease from Streptomyces cellulosae preferentially catalyzed the condensation reaction producing tripeptide amides in highly concentrated mixture solutions of various dipeptides and amino acid amides, although it weakly hydrolyzed the substrates at the same time. The tripeptide amides formed were l-Leu-Gly-Gly-NH2 (PLGGN) from l-Leu-Gly and Gly-NH2 and l-Leu-Gly-l-Leu-NH2 (PLGLN) from l-Leu-Gly and l-Leu-NH2. Moreover, the ratio of the rate of PLGLN formation per the proteolytic activity of this enzyme was much larger than those of the other proteases tested.

The formation of PLGLN was studied at various concentrations of the substrates (l-Leu-Gly and. l-Leu-NH2). The dependences of the initial velocities of PLGLN formation on the substrates concentrations could be explained by a two-substrate, one-product reaction mechanism involving a single active center forming the peptide bonds and two substrate-binding sites. The values of the substrate dissociation constants for enzyme-substrate complexes were about 0.6 m for l-Leu-Gly and 0.008 m for l-Leu-NH2.  相似文献   

17.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

18.
Better producers of l-lysine were obtained by derivation of fluoropyruvate(FP)-sensitive mutants from Brevibacterium lactofermentum AJ3990. The coexistence of FP and excess biotin synergistically stimulated l-lysine formation by washed cells. FP inhibited 50% of growth and pyruvate dehydrogenase (PDH) activity of AJ3990 at 0.04 mm and 1 mm, respectively. Therefore, the synergistic effect of FP and excess biotin seems to be due to the optimization of the PDH/pyruvate carboxylase activity ratio in l-lysine biosynthesis. This was confirmed by the derivation of FP-sensitive mutants which have the optimal level of PDH activity for l-lysine production. The best producer, AJ11204, had about 27% PDH activity as compared with the parental strain and accumulated 70 g of l-lysine per liter with a conversion yield of 50% from glucose in the presence of excess biotin.  相似文献   

19.
A bacterial arginase was purified to homogeneity from a strain of Bacillus brevis. The native enzyme, with an estimated MW of 143,000, migrated on SDS-PAGE as a single polypeptide of estimated MW of 33,000. The enzyme, highly specific to l-arginine, showed the maximum activity at pH 11.0 in the presence of Mn2+ ions and the pI was 4.8 by isoelectric focusing. The enzyme activity was increased significantly by the addition of Mn2+, Ni2+, or Co2+ ions, and inhibited potently by chemicals such as HgCl2, N-bromosuccinimide, or glutathione. The Kms for l-arginine and l-canavanine were 0.69 and 22.2 mm, respectively. The enzyme was inhibited competitively by γ-guanidinobutyric acid, and non-competitively by l-lysine, l-ornithine, creatine, blasticidin S, and edeine B1 Analysis of the N-terminal amino acid sequence of the purified bacterial enzyme found 33–36% homologies with the Agrobacterium, yeast, rat, and human enzymes.  相似文献   

20.
The covalent attachment of activated polyethylene glycol2 (PEG2) of 10,000 daltons to non- essential groups on a serine proteinase II (SepII) from Aspergillus sojae produced two modified preparations (PEG2-SepII-S and PEG2-SepII-L). The molecular weights of PEG2-SepII-S and PEG2-SepII-L were about 170,000 and 280,000, respectively. The PEG2-SepII-S lost about 80 % of its antigenicity, while the PEG2-SepU-L completely lost its antigenicity. In comparison of kinetic parameters with SepII there was less than 40 % variation in Km, but the values of kcat towards succinyl-l-leucy 1-l-leucy 1-l-valy 1-l-tyrosine 4-methylcoumaryl-7-amide (Suc-LLVY-MCA) or succinyl-l- alanyl-l-alanyl-l-valyl-l-alanine β-nitroanilide (Suc-AAVA-/>NA) decreased to about 70% less than that of SepII. The modified preparations have about 20 % activity towards fibrin hydrolysis and a low affinity for a protein proteinase inhibitor, Streptomyces subtilisin inhibitor (SSI), with a molecular weight of 23,000, while the preparations have high affinity for a low molecular weight microbial inhibitor, chymostatin. The stoichiometry of the reaction of a2-macroglobulin (α2M) with PEG2-SepII-S showed that PEG2-SepII-L bound to α2M in a molar ratio of 1:1. No appreciable differences were observed in the pH stabilities of the modified enzymes and the native one at pH 3.6, while the modified enzymes were more stable than that of the native one at pH 11.5. The two modified preparations were labile at 50°C, but the native enzyme was completely stable at 50°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号