首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The stereochemistry of (+)-(2Z,4E)-trans-1′,4′-dihydroxy-γ-ionylideneacetic acid, a major metabolite from Cercospora cruenta, a fungus found to produce (+)-abscisic acid, was reexamined as to its 1H?1H-Cosy and Noesy 2D-NMR spectra, and it was proved to have a chair conformation with an axial pentadienoate moiety. Further, the metabolism of (+)-[14C]-1′,4′-dihydroxy-γ-ionylideneacetic acid in tomato plants suggested the possibility of it being a biosynthetic intermediate of ABA in plants.  相似文献   

2.
[2–14C]-(2Z,4E)-γ-Ionylideneethanol and [2–14C]-(2Z,4E)-γ-ionylideneacetic acid were converted by Cercospora cruenta to [2–14C]-(2Z,4E)-1′,4′-dihydroxy-γ-ionylideneacetic acid and [2-14C]-(2Z,4E)-4′-hydroxy-γ-ionylideneacetic acid, which are intermediates of ABA biosynthesis in C. cruenta.  相似文献   

3.
We examined the biosynthetic pathway of abscisic acid (ABA) after isopentenyl diphosphate in a fungus, Cercospora cruenta. All oxygen atoms at C-1, -1, -1', and -4' of ABA produced by this fungus were labeled with (18)O from (18)O(2). The fungus did not produce the 9Z-carotenoid possessing gamma-ring that is likely a precursor for the carotenoid pathway, but produced new sesquiterpenoids, 2E,4E-gamma-ionylideneethane and 2Z,4E-gamma-ionylideneethane, along with 2E,4E,6E-allofarnesene. The fungus converted these sesquiterpenoids labeled with (13)C to ABA, and the incorporation ratio of 2Z,4E-gamma-ionylideneethane was higher than that of 2E,4E-gamma-ionylideneethane. From these results, we concluded that C. cruenta biosynthesized ABA by the direct pathway via oxidation of ionylideneethane with molecular oxygen following cyclization of allofarnesene. This direct pathway via ionylideneethane in the fungus is consistent with that in Botrytis cinerea, except for the positions of double bonds in the rings of biosynthetic intermediates, suggesting that the pathway is common among ABA-producing fungi.  相似文献   

4.
(R)-[2-14C]-Mevalonic acid (MVA) lactone was incorporated into (-)-4′-hydroxy-y-ionylideneacetic acid (4?-hydroxy-y-acid), which was first isolated from the culture broth of Cercospora cruenta. 4?-Hydroxy-γ-acid was then metabolized to (+)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid and (+)-(2Z,4E)-′14′-dihydroxy-γ-ionylideneacetic acid. The latter was converted to (+)-abscisic acid (ABA) with a high incorporation ratio by the fungus.  相似文献   

5.
The biosynthetic pathway to abscisic acid (ABA) from isopentenyl diphosphate in the fungus, Botrytis cinerea, was investigated. Labeling experiments with (18)O2 and H2(18)O indicated that all oxygen atoms at C-1, -1, -1' and -4' of ABA were derived from molecular oxygen, and not from water. This finding was inconsistent not only with the known carotenoid pathway via oxidative cleavage of carotenoids, but also with the classical direct pathway via cyclization of farnesyl diphosphate. The fungus produced new C15-compounds, 2E,4E-alpha-ionylideneethane and 2Z,4E-alpha-ionylideneethane, along with 2E,4E,6E-allofarnesene and 2Z,4E,6E-allofarnesene, but did not apparently produce carotenoids except for a trace of phytoene. The C15-compounds labeled with 13C were converted to ABA by the fungus, and the incorporation ratio of 2Z,4E-alpha-ionylideneethane was higher than that of 2E,4E-alpha-ionylideneethane. From these results, it was concluded that farnesyl diphosphate was reduced at C-1, desaturated at C-4, and isomerized at C-2 to form 2Z,4E,6E-allofarnesene before being cyclized to 2Z,4E-alpha-ionylideneethane; the ionylideneethane was then oxidized to ABA with molecular oxygen. This direct pathway via ionylideneethane means that the biosynthetic pathway to fungal ABA, not only before but also after isopentenyl diphosphate, differs from that to ABA in plants, since plant ABA is biosynthesized using the non-mevalonate and carotenoid pathways.  相似文献   

6.
(±)-(2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid was metabolized by Cercospora cruenta, which has the ability to produce (+)-abscisic acid (ABA), to give (±)-(2Z,4E)-xanthoxin acid, (±)-(2Z,4E)-5′-hydroxy-1′,2′-epoxy-1′,2′-dihydro-β-ionylideneacetic acid, (±)-1′,2′-epoxy-1′,2′-dihydro-β-ionone and trace amounts of ABA.  相似文献   

7.
Several compounds having the basic α-ionylideneacetic acid structure were tested in Cercospora rosicola resuspensions. At 100 μm, all the compounds inhibited abscisic acid (ABA) biosynthesis. Time studies with unlabelled and deuterated (2Z,4E)- and (2E,4E)-α-ionylideneacetic acids showed rapid conversions into both (2Z,4E)- and (2E,4E)-4′-keto-α-ionylideneacetic acids as major products. Incorporation of the label into ABA was specific for the 2Z,4E-isomer. Minor products, identified by GC-MS, were (2Z,4E)- and (2E,4E)-4′-hydroxy-α-ionylideneacetic acids and (2Z,4E)-1′-hydroxy-α-ionylideneacetic acid. The conversion to (2Z,4E)-l′-hydroxy-α-ionylideneacetic acid has not been previously reported and was specific for the 2Z,4E-isomer. A time study for the conversion of methyl esters of [2H3]-(2Z,4E)- and [2H3]-(2E,4E)-4′-keto-α-ionylideneacetates showed a slow introduction of the l′-hydroxyl group and specificity for 2Z,4E-isomer. Conversion of the ethyl esters of (2Z,4E)- and (2E,4E)-l′-hydroxy-α-ionylideneacetates into the ethyl esters of both ABA and (2E,4E)-ABA demonstrated that ABA can be formed by oxidation of the 4′-position after the insertion of the 1′-hydroxy group. The ethyl 1′-hydroxy acids were also isomerized to the corresponding ethyl (2Z,4E)- and ethyl (2E,4E)-3′-hydroxy-β-ionylideneacetates. Ethyl (2Z,4E)-1′-hydroxy acid also gave small amounts of ethyl l′,4′-trans-diol of ABA. These results suggest that ABA may be formed through a (2Z,4E)-1′-hydroxy-α-ionylidene-type intermediate in addition to the previously proposed route through (2Z,4E)-4′-keto-α-ionylideneacetic acid.  相似文献   

8.
(±)-(2Z,4E)-α-Ionylideneacetic acid (2) was enantioselectively oxidized to (?)-(l′S)-(2Z,4E)-4′-hydroxy-α-ionylideneacetic acid (3), (+)-(1′R)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid (4) and (+)-abscisic acid (ABA) (1) by Cercospora cruenta IFO 6164, which can produce (+)-ABA and (+)-4′-oxo-α-acid 4. This metabolism was confirmed by the incorporation of radioactivity from (±)-(2-14C)-(2Z,4E)-α-acid 2 into three metabolites. (?)-4′-Hydroxy-α-acid 3 was a diastereoisomeric mixture consisting of major 1′,4′-trance-4′-hydroxy-α-acid 3a and minor 1′,4′-cis-4′-hydroxy-α-acid 3b. These structures, 3a and 3b, were confirmed by 13C-NMR and 1H-NMR analysis. Also, the enantioselectivity of the microbial oxidation was reexamined by using optically pure α-acid (+)-2 and (?)-2, as the substrates.  相似文献   

9.
While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E‐α‐ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA‐overproducing strain ATCC58025 was fully sequenced and five STC‐coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme‐coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes, i.e., Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E‐α‐ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA.  相似文献   

10.
A Chiralcel OJ column was used to determine the absolute configuration of naturally occurring α-ionylideneacetic acid from Cercospora rosicola and γ-ionylideneacetic acid from C. cruenta as (R) enantiomers in accordance with their biosynthetic product, (S)-ABA. Both enantiomers of [1, 2-13C2]-α and γ-ionylideneacetic acids were prepared and fed to C. rosicola and C. cruenta. Six combinations of feeding experiments comparatively and unequivocally demonstrated stereoselectivity in the biosynthetic conversions, including stepwise hydroxylation at C-1′ and 4′. Enzymatic isomerization from the γ to α-intermediate was suggested not to be involved in ABA biosynthesis in C. rosicola.  相似文献   

11.
Farnesyl and α-ionylideneethyl compounds with tertiary and quaternary amine functional groups were synthesized and their effects on abscisic acid (ABA) biosynthesis of Cercospora rosicola observed. The trimethylammonium compounds were lethal at 10 μm and inhibitory at 10 μm, but lesser amounts of α-ionylideneethyltrimethylammonium iodide enhanced ABA biosynthesis. N,N-Dimethylfarnesylamine had little effect on ABA biosynthesis. N,N-Dimethyl (2Z,4E)- and (2E,4E)-α-ionylideneethylamines inhibited ABA biosynthesis at 100 μm but had no or little effect at lower concentrations. Farnesol and farnesylpyrophosphate (FPP) enhanced ABA biosynthesis. FPP appears to be both a precursor and an inducer and farnesol is an inducer of ABA biosynthesis. N,N-Dimethyl (2Z,4E)- and (2E,4E)-α-ionylideneethylamines were converted to N,N-dimethyl (2Z,4E)- and (2E,4E)-4′-keto-α-ionylideneethylamines, respectively. These conversions are analogous to those reported for α-ionone and α-ionylideneacetic acids and show that basic as well as acidic and neutral compounds with α-ionone type rings can undergo oxidation at the 4′-position. α-Ionylideneacetic acids inhibited growth of C. rosicola and the dimethylamines enhanced growth. Complete feedback inhibition was obtained with 400 μm of ABA.  相似文献   

12.
ABSTRACT

Abscisic acid (ABA) is one of the plant hormones that regulates physiological functions in various organisms, including plants, sponges, and humans. The biosynthetic machinery in plants is firmly established, while that in fungi is still unclear. Here, we elucidated the functions of the four biosynthetic genes, bcABA1-bcABA4, found in Botrytis cinerea by performing biotransformation experiments and in vitro enzymatic reactions with putative biosynthetic intermediates. The first-committed step is the cyclization of farnesyl diphosphate to give α-ionylideneethane catalyzed by a novel sesquiterpene synthase, BcABA3, which exhibits low amino acid sequence identities with sesquiterpene synthases. Subsequently, two cytochrome P450s, BcABA1 and BcABA2, mediate oxidative modifications of the cyclized product to afford 1?,4?-trans-dihydroxy-α-ionylideneacetic acid, which undergoes alcohol oxidation to furnish ABA. Our results demonstrated that production of ABA does not depend on the nucleotide sequence of bcABA genes. The present study set the stage to investigate the role of ABA in infections.  相似文献   

13.
To elucidate the role of the methyl substituent on the side chain of abscisic acid (ABA), we synthesized (2Z,4E)-3-demethyl-α-ionylideneacetic acid (4) and its related analogs, methyl (2Z)-3-demethyl-β-ionylideneacetate 1′,2′-epoxide (9) and methyl (2Z) and (2E)-3-demethyl-abscisate (12) and (13). The biological assay of these compounds suggested that the 3-methyl group on the side chain of ABA was indispensable to biological activity.  相似文献   

14.
Three plant growth regulators, paclobutrazol, ancymidol, and decylimidazole, which are putative inhibitors of gibberellin (GA) biosynthesis, were studied to determine their effect on abscisic acid (ABA) biosynthesis in the fungus Cercospora rosicola. All three compounds inhibited ABA biosynthesis, and paclobutrazol was the most effective, inhibiting ABA 33% at 0.1 micromolar concentrations. In studies using (E,E,)-[1-14C] farnesyl pyrophosphate, it was shown that ancymidol blocked biosynthesis prior to farnesyl pyrophosphate (FPP), whereas paclobutrazol and decylimidazole acted after FPP. The three inhibitors did not prevent 4′-oxidation of (2Z,4E)-α-ionylideneacetic acid. C. rosiciola metabolized ancymidol by demethylation to α-cyclopropyl-α-(p-hydroxyphenyl)-5-pyrimidine methyl alcohol. Paclobutrazol was not metabolized by the fungus. Information that these plant growth regulators inhibit ABA as well as GA biosynthesis should prove useful in determining the full range of action of these compounds.  相似文献   

15.
3Z-Nonenal and 3Z, 6Z-nonadienal, potential biosynthetic precursors of 2E-nonenal and 2E, 6Z-nonadienal, were for the first time synthesized stereoseleclively.  相似文献   

16.
An incorporation study of [1-13C] and [1,2-13C2] labeled sodium acetates into sorbicillinol 1 established a ring closure system between C-1 and C-6 and the positions that were oxidized and/or methylated on a hexaketide chain. Subsequent investigations, using 13C-labeled 1 prepared from [1-13C] labeled sodium acetate, clearly demonstrated that both bisorbicillinol 2 and sorbicillin 6 incorporated 13C-labeled 1 into their carbon skeletons. 13C-labeled bisorbicillinols 2 derived from [1-13C]- and [2-13C]-labeled sodium acetates clearly indicate that these were on the biosynthetic route from 1 to bisorbibutenolide (bislongiquinolide) 3 and bisorbicillinolide 4 via 2 as a branching point in the fungus.  相似文献   

17.
During our scrutiny of GC-EI-MS date for C15 alcohols as putative intermediates on the ABA biosynthetic pathway in Cercospora cruenta, a trace amount of 5-[2',2'-dimenthyl-6'-methylene-1'-cyclohexyl]-3-methyl-4-penten-1-ol (2,3-dihydro-γ-ionylideneethanol) was identified. Feeding experiments indicated that this compound was not an intermediate to ABA, but a catabolite that originated from γ-ionylideneacetaldehyde. The stereochemistry of 2,3-dihydro-γ-ionylideneethanol was deduced to be (3R,1'S) from a comparison with an authentic specimen prepared via baker’s yeast asymmetric reduction.  相似文献   

18.
Amides in a CH2Cl2 extract from the fruits of Piper retrofractum were detected by HPLC/APCI-MS. Seven new unsaturated amides, together with six known ones, were isolated, and their structures were determined to be N-isobutyl-2E,4E,12Z-octadecatrienamide (1), N-isobutyl-2E,4E,14Z-eicosatrienamide (2), 1-(octadeca-2E,4E,12Z-trienoyl)piperidine (3), 1-(eicosa-2E,4E,14Z-trienoyl)piperidine (4), 1-(octadeca-2E,4E-dienoyl)piperidine (5), 1-(eicosa-2E,4E-dienoyl)piperidine (6), and 1-(eicosa-2E,14Z-dienoyl)piperidine (7) on the basis of chemical and spectroscopic evidence.  相似文献   

19.
Geometrical configuration of the polyene chain of approximately 40 mono- and di-cis carotenoids was determined from 1970 through 1990. Subsequently, the kinetic, equilibrium and thermodynamic parameters (k, K, A, EA, ΔH#, ΔG#, ΔS#) of the reversible thermal isomerization of several symmetrical and unsymmetrical carotenoids were calculated. The rate of the iodine-catalyzed photoisomerization of (all-E)-, (9Z)- and (13Z)-zeaxanthin was compared and the ‘specific rate’ (per unit light energy at given wavelengths) of the iodine-catalyzed photoisomerization for several (13Z)-carotenoids was investigated. As the missing links of the biosynthetic pathway of paprika-carotenoids, carotenoids containing new end groups were isolated; their sterically unhindered mono-cis isomers were also prepared and their geometrical configuration was determined. The investigation concentrated on the substrate specificity of the enzyme violaxanthin-deepoxidase, the light-induced formation of (13Z)-violaxanthin in green leaves, the binding of xanthophylls to the bulk light-harvesting complex (LHC) of photosystem II in higher plants, the biochemical basis of color as an aesthetic quality in Citrus-fruits and the (9Z)-epoxycarotenoid cleavage enzyme activity for ABA biosynthesis. Recently (9Z)-capsanthin-5,6-epoxide and capsoneoxanthin, two novel carotenoids have been isolated from natural sources.  相似文献   

20.
Leaf Alcohol     
The diethylamine-catalyzed aldol condensation of E-2-hexenal yielded a mixture of 2-E,4-E,6-E- (IV-a) and 2-E,4-Z,6-E-4-ethyldeca-2,4,6-triene-1-al (IV-b). Structual and geometrical elucidation of both alcohols were made by means of spectral evidence as well as by the catalytic hydrogenation leading to the same 4-ethyldecanol (VI). The “b-peak substance” detected in the leaf alcohol reaction products was proved to be identical with 4-ethyldecanol (VI). The treatment of the trienal containing the central Z-double bond with sodium under the leaf alcohol reaction condition failed to afford ethyl-propyl-benzyl alcohol, but gave 4-ethyldecanol (VI). This result safely excludes the operation of the previously suspected valence tautomerism (Cope rearrangement) in the leaf alcohol reaction, and accounts for the pathway of the formation of (VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号