首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of three types of proteinase A, B and C in the autolysate of baker’s yeast was demonstrated by the chromatography on DEAE-Sephadex A-50, and proteinase A and C were isolated and purified by a relatively simple procedure, which was mainly conducted by repeating the chromatography and alcohol fractionation. The final preparation of proteinase C was found to be homogeneous by various physical criteria and crystallized from alcohol solution. On the other hand, although the preparation of proteinase A also showed homogeneous in chromatographic and ultracentrifugal analyses, the result of electrophoresis disclosed the heterogeneity of the preparation. As the results of the chemical and physicochemical analyses, both enzymes showed large contents of carbohydrate, higher molecular weights and acidic isoelectric points, which seemed to be characteristic to the present proteinases. The properties of three types of proteinase from yeast are also discussed.  相似文献   

2.
Yeast pro-proteinase C was transformed to active form by brief exposure to a lower concentration of protein denaturants: urea, guanidine hydrochloride, acid and various solvents including dimethylformamide, 2-chloroethanol, dioxane, formamide, ethanol and n-propanol. Dioxane 30~35% or 4 m urea were most effective in obtaining high activity.

In respect to catalytic properties, the reagent-activated enzymes were identical with proteinase C which was obtained from yeast autolysate. The characteristic participation of cysteine and serine residues in the catalytic process was also suggested in the aforementioned enzymes.

The proenzyme was composed of two subunit proteins. However their dissociation was not involved in the denaturant-activation process, as determined from the sedimentation and gel-filtration analyses. Changes in the reactivity of an unessential cysteine residue of the proenzyme, however, suggested that the structural alteration would be accompanied in the process.

From these results, it was concluded that the denaturants rearrange the quartenary structure of the proenzyme and lead to demasking of the active site.

Activation of pro-proteinase C by yeast proteinase A was examined under controlled conditions. Maximum activation occurred at pH 3.5 and 0°C, releasing a cationic protein. The active enzyme and the protein was separated and chemically analyzed.

The same N-terminal amino acid, lysine, was found in both the active enzyme and proenzyme. Amino acid analysis revealed that the released protein is a protein of small molecular weight about 19,000 containing one SH-group and one disulfide bond. These results strongly suggested that the protein would correspond to the cationic subunit of the proenzyme.

In both activation processes by denaturant and proteinase A, a decrease of β-structure was found as determined from ORD and CD measurements.

All of these results supported the idea that activation of the proenzyme occurred by denaturant- or enzyme-modification of the inhibitor protein, followed by demasking of the active site.  相似文献   

3.
The yeast proteinase that causes activation of the chitin synthetase zymogen has been purified by a procedure that includes affinity chromatography on an agarose column to which the proteinaceous inhibitor of the enzyme had been covalently attached. The purified enzyme yielded a single band upon disc gel electrophoresis at pH 4.5 in the presence of urea. At the same pH, but without urea, a faint band was detected in coincidence with enzymatic activity, whereas at pH 9.5, either in the absence or in the presence of sodium dodecyl sulfate, no protein zone could be seen. From sedimentation and gel filtration data, a molecular weight of 44,000 was estimated. The proteinase was active within a wide range of pH values, with an optimum between pH 6.5 AND 7. Titraton of the activity with the protein inhibitor from yeast required 1 mol of inhibitor/mol of enzyme. A similar result was obtained with phenylmethylsulfonyl fluoride, an indication that 1 serine residue is required for enzymatic activity. The enzyme exhibited hydrolytic activity with several proteins and esterolytic activity with many synthetic substrates, including benzoylarginine ethyl ester and acetyltyrosine ethyl ester.A comparison of the properties of the enzyme with those of known yeast proteinases led to the conclusion that the chitin synthestase activating factor is identical with the enzyme previously designated as proteinase B (EC 3.4.22.9). This is the first time that a homogeneous preparation of proteinase B has been obtained and characterized.  相似文献   

4.
The activation of yeast proteinase B at pH 5 has been suggested to be due to the degradation of a specific inhibitor for the enzyme, IB, by proteinase A. However, we found that when pepstatin, which completely inhibits proteinase A, was included in the pH 5 activation mixture, the same time-dependent activation of proteinase B was observed. Furthermore, proteinase B preparations that were void of proteinase A activity were still activated by incubation at pH 5. We found that the activation of proteinase B at pH 5 was due primarily to the irreversible loss of inhibitory effect of IB, which can be resolved by isoelectrofocusing into four distinct bands with isoelectric points of 4.6, 6.1, 6.8 and 7.6. These four forms of IB showed varying degrees of stability at pH 5, which may explain some of the differing observations reported in the past.  相似文献   

5.
Two Ca2+-requiring proteinases have been purified from rabbit liver cytosol and shown to be present in isolated hepatocytes. They differ in relative molecular mass, with the major and minor forms, Mr = 150,000 and Mr = 200, 000, accounting for 75 and 18% of the total cytosolic neutral proteinase activity, respectively. Both are recovered as inactive proenzymes that can be converted to the active, low-Ca2+-requiring proteinases by incubation with Ca2+ and substrate [S. Pontremoli, E. Melloni, F. Salamino, B. Sparatore, M. Michetti, and B. L. Horecker (1984) Proc. Natl. Acad. Sci. USA81, 53–56. Each proenzyme is composed of two subunits, with molecular masses of 80 and 100 kDa, respectively. Activation of the proenzymes was found to correlate with their dissociation into subunits. The optimum pH for conversion of the proenzymes to the active proteinases in the presence of 5 mm Ca2+ and 2 mg/ml of denatured globin was approximately 7.5, and the same pH optimum was observed for the digestion of denatured globin by the activated proteinases. Following activation, each proteinase was observed to undergo autolytic inactivation at rates that were dependent on the concentration of both Ca2+ and the digestible substrate. A model is proposed for the activation of the proenzymes and the subsequent inactivation of the active proteinases.  相似文献   

6.
Protease inhibitors play an important role in host plant defence against herbivores. However, insects have the ability to elevate the production of proteinases or resort to production of a diverse array of proteinases to offset the effect of proteinase inhibitors. Therefore, we studied the inhibition of pro‐proteinase(s) activation in the midgut of the polyphagous pest Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in response to protease inhibitors to develop appropriate strategies for the control of this pest. Gelatin coating present on X‐ray film was used as a substrate to detect electrophoretically separated pro‐proteinases and proteinases of H. armigera gut extract on native‐ and sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. Six activated pro‐proteinase bands were detected in H. armigera gut lumen, which were partially purified and characterized using substrate assays. Activated H. armigera midgut pro‐proteinase(s) showed activity maxima at pH 8 and 10, and exhibited optimal activity at 40 °C. The activation of H. armigera gut pro‐proteinase isoforms was observed in the fraction eluted on benzamidine‐sepharose 4B column. Purification and substrate assay studies revealed that 23–70 kDa polypeptides were likely the trypsin/chymotrypsin‐like pro‐proteinases. Larvae of H. armigera fed on a cocktail of synthetic inhibitors (antipain, aprotinin, leupeptin, and pefabloc) showed maximum activation of pro‐proteinases compared with the larvae fed on individual inhibitors. The implications of these results for developing plants expressing proteinase inhibitors for conferring resistance to H. armigera are discussed.  相似文献   

7.
Incubation of a crude yeast extract containing phosphofructokinase with proteinase A, proteinase B or carboxypeptidase Y gave the following results: Proteinase B and carboxypeptidase Y did not change the activity of phosphofructokinase during incubation. On the other hand, incubation with proteinase A resulted in a 40-100% activation; continued incubation, however, led to an inactivation of the enzyme. Addition of allosteric effectors did not change the activation or inactivation process. The activated phosphofructokinase was not changed with respect to pH optimum and ATP inhibition. Molecular weight determination of phosphofructokinase in crude extracts in the presence of inhibitors of proteinase A indicated a molecular weight of 700000. Without inhibitors of proteinase A, the molecular weight was determined to be 600 000, while after 40-100% activation by proteinase A, a molecular weight of 500 000 was obtained. The activity profile of proteinase A in density gradients indicated that this enzyme is bound to variety of cellular proteins.  相似文献   

8.
A fibrinogenolytic proteinase from the venom of Naja nigricollis was purified by chromatography on Bio-Rex 70 and Phenyl-Sepharose. The purified enzyme, designated proteinase F1, was homogeneous by the criterion of SDS-polyacrylamide gel electrophoresis, and consisted of a single chain with a molecular weight of 58 000. Purified proteinase F1 had approximately 15-fold more proteinase activity than the crude venom, based on its ability to inactive α2-macroglobulin. The enzyme acted on only the Aα-chain of fibrinogen and left the Bβ- and γ-chains intact. The pH optimum for this fibrinogenolytic activity was in the range of pH 8 to 10. In addition to its activity on fibrinogen, proteinase F1 was active on α2-macroglobulin and fibronectin, but did not degrade casein, hemoglobin or bovine serum albumin. The enzyme was not inhibited by inhibitors of serine proteinases, cysteine proteinases or acid proteinases, but only by the metalloproteinase inhibitor, EDTA. The inhibition by EDTA could be prevented by Zn2+, but not by Ca2+ or Mg2+.  相似文献   

9.
Summary Specific proteolytic activities are known to be induced in Escherichia coli following irradiation. Consequently it seemed of interest to investigate whether variations in proteinase activities occur in yeast.Among the five most well known proteinases of Saccharomyces cerevisiae, we have found that proteinase B activity increases up to three times in wild-type RAD + yeast cells after a dose of 50 Jm-2 of 254 nm ultraviolet light (40% survival). Carboxypeptidase Y and aminopeptidase I (leucin aminopeptidase) activities were only moderately increased. Proteinase A activity was only slightly enhanced, while aminopeptidase II (lysin aminopeptidase) was unaffected in both RAD + strains studied.The observed post UV-increase in proteinase B activity was inhibited by cycloheximide and was dose dependent. Increases in proteinase B levels were independent of the activation method used to destroy the proteinase B-inhibitor complex present in the crude yeast extracts.A standard method for comparison of the postirradiation levels among different proteinases, strains and methods of activation is presented.Abbreviations UV Ultraviolet - BRIJ-35 Polyoxyethylene-23-lauryl ether - EDTA Ethylene diamine tetraacetic acid - EGTA Ethylene glycol bis (-aminoethyl ether) tetraacetic acid - MOPS 3-[N-morpholine]propansulfonic acid - HEPES N-2-Hydroxyethylpiperazine-N-2-ethansulfonic acid - Tris Tris(hydroxy methyl)amino methane - BTPNA N-benzoyl-L-tyrosine-p-nitroanilide - CP.Y Carboxypeptidase Y - Leu.AP Leucin amino peptidase - Lys.AP Lysin amino peptidase - DMFA Dimethyl formamide - CHX Cycloheximide - PMSF Phenylmethyl sulfonyl fluoride - TCA Trichloroacetic acid Code Number of Enzymes EC. 3.4.23.8 Proteinase A - EC. 3.4.22.9 Proteinase B - EC. 3.4.12.8 Carboxypeptidase Y - EC. 3.4.24.4 Thermolysin - EC. 3.4.23.1 Pepsin A  相似文献   

10.
The pH versus proteinase activity curve (casein or hemoglobin plus urea substrate) for homogenates of unfertilized Lytechinus eggs reveals two regions of maximum activity: one between pH 3.5 and 4.3, and another of far greater magnitude from pH 8.0 to 11.0. The two classes of proteinases can be separated on a sucrose density gradient. Both the acid and alkaline proteinases in homogenates prepared in isotonic monovalent salt solutions are remarkably stable at pH 7.4 and 0°C. Using synthetic peptide substrates, an enzyme with the specific esterase activity of chymotrypsin was demonstrated; this enzyme accounts for the major part of the proteinase activity at alkaline pH. In addition, an enzyme with specific esterase activity of trypsin was shown to be present, but of low activity. The proteinase activity at acid pH is largely due to an enzyme resembling cathepsin D. The data also suggest the presence of cathepsin B and cathepsin IV (or catheptic carboxypeptidase). When eggs are homogenized in isotonic NaCl plus KCl at pH 7.4, 0.02 M tris buffer at 0°C, all of the alkaline proteinase, and 85–90% of the acid proteinase activity is sedimented at 10,000 g. The presence of any proteinase activity in the supernatant phase represents an artifact of the preparative procedures used. The granules which possess the proteinase activity are contained entirely in the yolk fractions; and the acid proteinase is contained in a population of granules which sediment more readily than those which contain the alkaline proteinase. The acid proteinase resembles the lysosomal acid hydrolases in that it is readily released from the particulates; in contrast, the alkaline proteinase is bound relatively firmly. In contradistinction to reports in the literature, no changes in proteinase activity nor intracellular distribution could be detected following fertilization.  相似文献   

11.
Three endopeptidases, proteinases A, B, and Y, were purified from baker's yeast, Saccharomyces cerevisiae. Two molecular forms of proteinase A (PRA), Mr 45,000 and 54,000, (estimated on SDS-PAGE) were obtained. Both forms were inhibited by pepstatin and other acid proteinase inhibitors. The enzyme digested hemoglobin most rapidly at pH 2.7-3.2 and casein at pH 2.4-2.8 and 5.5-6.0. The optimum pH for hydrolysis of protein substrates could be shifted to about 5 with 4-6 M urea. Urea also stimulated the enzyme activity by 30-50%. As other acid proteinases, the enzyme preferentially cleaved peptide bonds of X-Tyr and X-Phe type. A proteinase B (PRB) preparation of approximately Mr 33,000 possessed milk clotting activity and showed an inhibition pattern typical for seryl-sulfhydryl proteases. The purified enzyme could be stabilized with 40% glycerol and stored at -20 degrees C without significant loss of activity for several months. The third endopeptidase, designated PRY, of Mr 72,000 when estimated by Sephadex G-100 gel filtration, had properties resembling PRA and PRB. Similar to PRB, it could be inhibited by up to 90% with phenylmethylsulfonyl fluoride and para-chloromercuribenzoate and preferentially hydrolyzed the Leu15-Tyr16 peptide bond of the oxidized beta-chain of insulin. On the other hand, contrary to PRB, it had neither milk clotting activity nor esterolytic activity toward N-acetyl-L-tyrosine ethyl ester and N-benzoyl-L-tyrosine ethyl ester and was stable during storage at -20 degrees C without glycerol. The enzyme also showed a lower pH optimum for hydrolysis of casein yellow than PRB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cephalosporium sp. KM388 produced two kinds of extracellular alkaline proteinases (C and D) in complex medium. Proteinases C and D were purified 263 and 195-fold, respectively, to an electrophoretically homogeneous state from the culture broth by hydrophobic adsorption on Butyl- Toyopearl 650M with 30% saturated ammonium sulfate and.chromatographies on DEAE- Sepharose Cl-6B, DEAE-Toyopearl 650 m, CM-Sepharose Cl-6B, and Sephadex G-75. The molecular weights of proteinases C and D were 22,000 and 24,000, respectively, by gel filtration. The isoelectric points were observed as pi > 10.5 for proteinase C and pi = 3.8 for proteinase D. The pH optima for the proteolytic activity of proteinases C and D were 11 and 10, respectively. Proteinase C was unstable below pH 10 but was stabilized by Ca2+ or Mg2 +. Proteinase D was stable above pH 7. Proteinase C was inhibited only by Hg2 +, but proteinase D was inhibited by Mn2 + and Zn2 + in addition to Hg2 +. Both proteinases were inhibited strongly by chymostatin, weakly by DFP and PMSF, but little by PCMB, MIA, EDTA, and SDS. These enzymes showed very high activity against BTEE but low activities against BAEE and TAME as well as Bz-ala-OMe.  相似文献   

13.

Background  

Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the α-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates.  相似文献   

14.
A multivariate statistical approach was employed for the optimization of conditions for carotenoid production by Rhodotorula glutinis DBVPG 3853 from a substrate containing concentrated rectified grape must as the sole carbohydrate source. Several experimental parameters (carbohydrate, yeast autolysate and salt concentrations, and pH) were tested at two levels by following a fractional factorial design. Carotenogenesis was most sensitive to both initial pH and yeast autolysate concentration. A Central Composite Design experiment was then performed by obtaining both second-order polynomial models and isoresponse diagrams where initial pH and yeast autolysate concentration were considered as variables. In this way it was possible to determine the conditions (pH = 5.78, yeast autolysate = 4.67 g L−1) which maximize both the concentration of total carotenoids and that of β-carotene (6.9 mg L−1 and 1100 μg L−1 of culture fluid, respectively, after 120 h of fermentation). Journal of Industrial Microbiology & Biotechnology (2000) 24, 41–45. Received 23 February 1999/ Accepted in revised form 14 September 1999  相似文献   

15.
Using mutant strain ABYS1 of Saccharomyces cerevisiae lacking four main vacuolar proteinases, proteinase A, proteinase B, carboxypeptidase Y, and carboxypeptidase S, we examined the identities of chromatin-associated proteinases, ruling out possible contamination of the chromatin fraction by them. The chromatin of strain ABYS1 showed three peaks of proteolytic activity at pH 4, 7, and 11, and these activities were found to be derived from three species of proteinases, the aspartic, serine neutral, and serine alkaline ones. As these chromatin-associated proteinases of strain ABYS1 were identical in both quality and quantity to those of wild-type strain of yeast, we suggest that the yeast chromatin contains three species of specific proteinases as essential components.  相似文献   

16.
Vacuolar processing enzymes (VPEs) are cysteine proteinases responsible for maturation of various vacuolar proteins in plants. A larger precursor to VPE synthesized on rough endoplasmic reticulum is converted to an active enzyme in the vacuoles. In this study, a precursor to castor bean VPE was expressed in a pep4 strain of the yeast Saccharomyces cerevisiae to examine the mechanism of activation of VPE. Two VPE proteins of 59 and 46 kDa were detected in the vacuoles of the transformant. They were glycosylated in the yeast cells, although VPE is not glycosylated in plant cells in spite of the presence of two N-linked glycosylation sites. During the growth of the transformant, the level of the 59 kDa VPE increased slightly until a rapid decrease occurred after 9 h. By contrast, the 46 kDa VPE appeared simultaneously with the disappearance of the 59 kDa VPE. Vacuolar processing activity increased with the accumulation of the 46 kDa VPE, but not of the 59 kDa VPE. The specific activity of the 46 kDa VPE was at a similar level to that of VPE in plant cells. The 46 kDa VPE instead of proteinase A mediated the conversion of procarboxypeptidase Y to the mature form. This indicates that proteinase A responsible for maturation of yeast vacuolar proteins can be replaced functionally by plant VPE. These findings suggest that an inactive VPE precursor synthesized on the endoplasmic reticulum is transported to the vacuoles in the yeast cells and then processed to make an active VPE by self-catalytic proteolysis within the vacuoles.  相似文献   

17.
A new subtilisin-like proteinase hydrolyzing chromogenic peptide substrate Glp-Ala-Ala-Leu-p-nitroanilide optimally at pH 8.1 was found in common plantain leaves. The protease named plantagolisin was isolated by ammonium sulfate precipitation of the leaves' extract followed by affinity chromatography on bacitracin-Sepharose and ion-exchange chromatography on Mono Q in FPLC regime. Its molecular mass is 19000 Da and pI 5.0. pH-stability range is 7-10 in the presence of 2 mM Ca(2+), temperature optimum is 40 degrees C. The substrate specificity of subtilase towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases: proteinase from leaves of the sunflower and taraxalisin. Besides, the proteinase is able to hydrolyze substrates with Pro in P(1) position. The enzyme hydrolyzes collagen. alpha and beta chains are hydrolyzed simultaneously in parallel; there are only low-molecular-mass hydrolysis products in the sample after 2 h of incubation. Pure serine proteinase was inactivated by specific serine proteinases inhibitors: diisopropylfluorophosphate, phenylmethylsulfonyl fluoride and Hg(2+). The plantagolisin N-terminal sequence ESNSEQETQTESGPGTAFL-, traced for 19 residues, revealed 37% homology with that of subtilisin from yeast Schizosaccharomyces pombe.  相似文献   

18.
The proteinases in the midguts of three scarab white grub species, Lepidiota noxia, L. negatoria, and Antitrogus consanguineus, were investigated to classify the proteinases present and to determine the most effective proteinase inhibitor for potential use as an insect control agent. pH activity profiles indicated the presence of serine proteinases and the absence of cysteine proteinases. This was confirmed by the lack of inhibition by specific cysteine proteinase inhibitors. Trypsin, chymotrypsin, elastase, and leucine aminopeptidase activities were detected by using specific synthetic substrates. A screen of 32 proteinase inhibitors produced 9 inhibitors of trypsin, chymotrypsin, and elastase which reduced proteolytic activity by greater than 75%. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Proteinase secreted in the environment by bacilli on different growth stages was isolated by ion chromatography from the culture medium of Bacillus pumilus KMM 62. According to the hydrolysis character of specific chromogenic substrates and inhibition type, the enzyme belongs to subtilisin-like serine proteinases. The isolated proteinase with the molecular mass of 30 kDa displays maximum activity on hydrolysis of the peptide substrate Z-Ala-Ala-Leu-pNA at pH 8.0–8.5 and temperature 30°C. The protein is stable in the range of pH 7.5–10.0. It was shown that subtilisin-like serine proteinase from B. pumilus KMM 62 possessed thrombolytic activity.  相似文献   

20.
It has been previously demonstrated in our laboratory that uridine nucleosidase (EC 3.2.2.3) is subjected in yeast to inactivation. An inactivating fraction has been isolated and purified to homogeneity with a procedure which includes gel filtration, adsorption chromatography, and electrofocusing techniques. The molecular weight of the enzyme, estimated either by sodium dodecyl sulfate disc gel electrophoresis or by gel filtration is approximately 44,000. No quaternary structure was evidenced. The inactivating activity possesses proteolytic activity against casein and hemoglobin with pH optima of 2.5 and 3.2, respectively. The optimal pH for uridine nucleosidase inactivation is around 4.7. The inactivating activity as well as the proteolytic activity of the preparation can be inhibited by IA but not by IB2 and IC, yeast macromolecular inhibitors for proteinase A (EC 3.4.23.8), B (EC 3.4.22.9), and C (EC 3.4.12.8), respectively. The apparent isoelectric point is pH 4.03. The carbohydrate content is 8.5%. A comparison of the properties of the inactivating protein with those of known yeast proteinases leads to the conclusion that it is identical with the enzyme previously designated as proteinase A, which for the first time has been obtained homogeneous and characterized. It has been shown that proteinase A could play a physiological role in the uridine nucleosidase inactivation process when it is associated, as a complex, with proteinase B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号