首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructosyltransferases (FTs) are key enzymes in plants and bacteria to synthesize fructans. To gain insight on the specificity of the hexose subsites in the active site of FTs, ethylene glycol fructoside (EGF) and glycerol fructoside (GF), containing fructose in the furanose configuration, were synthesized in vitro and used as substrates to study the effect on the activity of bacterial levansucrase (BsLS), chicory root sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT). The results demonstrated that EGF and GF, at physiologically relevant concentrations, were efficient acceptor substrates for BsLS and 1-FFT, but not for 1-SST. EGF and GF cannot be used as donor substrates for BsLS, 1-SST and 1-FFT. A model is proposed to explain the subsite specificity differences between the three FTs involved in this study.  相似文献   

2.
3.
4.
A sucrose: sucrose 1-fructosyltransferase (1-SST) gene and cDNA (Lp 1-SST) from perennial ryegrass (Lolium perenne) were isolated. The Lp 1-SST gene was fully sequenced and shown to contain three exons and two introns. Nucleotide sequence analysis of the 4824 bp Lp 1-SST genomic sequence revealed 1618 bp of 5' UTR and an open reading frame of 1962 bp encoding a protein of 653 amino acids. Lp 1-SST is 95% identical to the tall fescue 1-SST and contains plant fructosyltransferase functional domains. Lp 1-SST corresponds to a single copy gene in perennial ryegrass, and is expressed in young leaf bases and mature leaf sheaths. The recombinant Lp 1-SST protein from corresponding cDNA expression in Pichia pastoris showed 1-SST activity.  相似文献   

5.
6.
7.
8.
9.
10.
11.
A novel enzyme, which was named Nα-benzyloxycarbonyl amino acid urethane hydrolase, was purified from a cell-free extract of Streptococcus faecalis R ATCC 8043, using Nα-benzyloxycarbonyl glycine as substrate. The enzyme was purified 1300-fold with an activity yield of 8%. The purified enzyme was homogeneous by disc electrophoresis. The molecular weight of the native enzyme is about 220,000 by gel filtration, and a molecular weight of 32,000 was determined for the reduced and denatured enzyme by gel electrophoresis in sodium dodecyl sulfate. The isoelectric point was 4.48. The enzyme was inhibited by p-chloromercuribenzoate. The presence of divalent cations (i.e., Co2+ or Zn2+) is essential for its activity.  相似文献   

12.
13.
Kawakami A  Yoshida M 《Planta》2005,223(1):90-104
Fructans play important roles not only as a carbon source for survival under persistent snow cover but also as agents that protect against various stresses in overwintering plants. Complex fructans having both ß-(2,1)- and ß-(2,6)-linked fructosyl units accumulate in wheat (Triticum aestivum L.) during cold hardening. We detected fructan: fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) activity for catalyzing the formation and extension of ß-(2,1)-linked fructans in hardened wheat tissues, cloned cDNAs (wft3 and wft4) of 1-FFT, and analyzed the enzymatic properties of a wft3 recombinant protein (Wft3m) produced by yeast. Wft3m transferred ß-(2,1)-linked fructosyl units to phlein, an extension of sucrose through ß-(2,6)-linked fructosyl units, as well as to inulin, an extension of sucrose through ß-(2,1)-linked fructosyl units, but could not efficiently synthesize long inulin oligomers. Incubation of a mixture of Wft3m and another recombinant protein of wheat, sucrose:fructan 6-fructosyltransferase (6-SFT), with sucrose and 1-kestotriose produced fructans similar to those that accumulated in hardened wheat tissues. The results demonstrate that 1-FFT produces branches of ß-(2,1)-linked fructosyl units to phlein and graminan oligomers synthesized by 6-SFT and contributes to accumulation of fructans containing ß-(2,1)- and ß-(2,6)-linked fructosyl units. In combination with sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and 6-SFT, 1-FFT is necessary for fructan synthesis in hardened wheat.  相似文献   

14.
15.
小麦不同基因型材料花药培养中雄核发育的研究   总被引:4,自引:0,他引:4  
薛建平  张爱民 《植物学通报》2002,19(2):215-218,214
对小麦离体花药中花粉发育的调查表明 :难诱导材料花药在培养初期 ,花粉退化快 ,大量小孢子败育 ,多细胞 (核 )花粉出现晚、频率低 ;而易诱导材料花药培养初期 ,花粉退化相对延缓 ,多细胞 (核 )花粉出现早且频率高 ,这些内在的优势使得更多的小孢子有可能转向孢子体发育 ,从而获得较高的出愈率。  相似文献   

16.
Protoplasts were isolated from cultured tobacco cells by removing the cell wall enzymatically. We examined the time courses of treatment with some different concentrations of enzymes (cellulase and macerozyme) and with some different kinds and concentrations of sugars (sucrose, sorbitol and mannitol) which produce good conditions for protoplast isolation. The best conditions for protoplast preparation from tobacco cells cultured in vitro were: use of actively growing cells and isolation of protoplasts with 5% cellulase and 0.1% macerozyme in 0.5% sorbitol.  相似文献   

17.
We have previously reported the molecular characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) of Bromus pictus, a graminean species from Patagonia, tolerant to cold and drought. Here, this enzyme was functionally characterized by heterologous expression in Pichia pastoris and Nicotiana tabacum. Recombinant P. pastoris Bp6-SFT showed comparable characteristics to barley 6-SFT and an evident fructosyltransferase activity synthesizing bifurcose from sucrose and 1-kestotriose. Transgenic tobacco plants expressing Bp6-SFT, showed fructosyltransferase activity and fructan accumulation in leaves. Bp6-SFT plants exposed to freezing conditions showed a significantly lower electrolyte leakage in leaves compared to control plants, indicating less membrane damage. Concomitantly these transgenic plants resumed growth more rapidly than control ones. These results indicate that Bp6-SFT transgenic tobacco plants that accumulate fructan showed enhanced freezing tolerance compared to control plants.  相似文献   

18.
The enzyme sucrose: sucrose 1-fructosyltransferase was partially purified from barley leaf growth zones. Four steps (ammonium sulphate precipitation and polyethylene glycol precipitation, followed by chromatography on Concanavalin A-sepharose and hydroxylapatite) yielded a 35-fold purification. The resulting preparation of 1-SST which still contained a number of different activities related to fructan metabolism, was subjected to preparative isoelectric focusing, and sections of the gel were analysed individually for 1-SST and related activities, using sucrose and 1-kestose as substrates. This procedure yielded a 196-fold purification and revealed the presence of two isozymes of 1-SST with pI values of 4.93 and 4.99, as determined by analytical isoelectric focusing of the corresponding fractions. Both isozymes produced glucose and 1-kestose when incubated with sucrose. In addition, small amounts of 6-kestose and tetrasaccharides were formed. In particular, one of the two 1-SST isozymes yielded fructose when incubated with 1-kestose, indicating that it also acts as a fructan exohydrolase. The other isozyme exhibited less fructan exohydrolase activity. Nystose was also degraded by the fructan exohydrolase activity but less than 1-kestose, whereas 6-kestose was not a substrate for the enzyme. Incubation of both 1-SSTs with different concentrations of sucrose showed that the enzyme was not saturated even at 500 mM. As for the barley sucrose: fructan 6-fructosyltransferase, both isozymes of 1-SST yielded two polypeptide bands of molecular weight 50 and 22 kDa upon sodium dodecylsulphate polyacrylamide gel electrophoresis, suggesting their close relationship to invertase (composed of two subunits of similar size), as previously reported for other plants.  相似文献   

19.
20.
Abstract: Ubiquinone synthesis has been studied in cultured C-6 glial and neuroblastoma cells by utilizing an inhibitor, 3-β-(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride (U18666A), of cholesterol biosynthesis. Exposure of C-6 glial cells to nanomolar quantities of U18666A caused a marked inhibition of total sterol synthesis from [14C]acetate or [3H]mevalonate within minutes. A 95% inhibition was apparent after a 3-h exposure to 200 ng/ml of U18666A. These observations, together with studies of the incorporation of radioactivity from the two precursors into cholesterol, desmosterol, lanosterol, and squalene, indicated that although the most sensitive site to inhibition by U18666A is desmosterol reduction to cholesterol, a major site of inhibition is demonstrable at a more proximal site, perhaps squalene synthetase. As a consequence of the latter inhibition, exposure of C-6 glial cells to U18666A caused a marked stimulation of incorporation of [14C]acetate or [3H]mevalonate into ubiquinone. Over a wide range of U18666A concentrations, the increase in ubiquinone synthesis was accompanied by an approximately similar decrease in total sterol synthesis. Whereas in the absence of U18666A only approximately 7% of the radioactivity incorporated from [3H]mevalonate into isoprenoid compounds was found in ubiquinone, in the presence of the drug approximately 90% of incorporated radioactivity was found in ubiquinone. The reciprocal effects of U18666A on ubiquinone and sterol syntheses were apparent also in the neuronal cells. The data thus demonstrate a tight relationship between ubiquinone and sterol biosyntheses in cultured cells of neural origin. In such cells ubiquinone synthesis is exquisitely sensitive to the availability of isoprenoid precursors derived from the cholesterol biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号