首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Ketoglutarate was formed from the various carbohydrates including lactose, maltose, sucrose, d-glucose, d-fructose, d-galactose, d-mannose, d-mannitol, l-rhamnose, d-xylose, l-arabinose and glycerin. The influence of pH of the reaction mixture were tested, and inorganic phosphate was observed to be indispensable for α-ketoglutarate-fermentation. A cell of E. coli grown statically on glucose was found to reveal an ability of producing α-ketoglutarate under aerobic conditions. Optically dextro lactic acid was potent in the formation of a-ketoglutaric acid. The following reagents revealed the inhibiting effect on α-ketoglutarate-fermentation; CuSO4, AgNO3, iodoacetate, 2, 4-dinitrophenol, NaN3, 3-sulfanilamido-6-methoxypyridazine and arsenite, while, kanamycin and 8-azaguanine has no inhibiting effect. When E. coli was grown in a glucose-medium, a small supply of air increased the yield of acetate against decreasing α-ketoglutarate.  相似文献   

2.
α-Ketoglutarate was obtained in a very small amount by the oxidative fermentation of acetate with either a growing culture or the washed cells of Escherichia coli. This microorganism was also observed to accumulate a considerable amount of α-ketoglutarate as the oxidation-product of C4-dicarboxylic acids such as succinate, fumarate, malate and oxalacetate. The addition of acetate to the reaction mixtures containing either C3- or C4-acids brought about an increase in the yield of α-ketoglutarate. The bacteria of coli-aerogenes revealed an ability of oxidizing tricarboxylic acids under suitable conditions, but there was no noticeable production of α-ketoglutarate. The formation of glyoxylate was observed to occur during the degradation of citrate by the bacteria of coli-aerogenes. Finally, a cyclic mechanism of aerobic carbon-metabolism in the bacteria was propounded and discussed.  相似文献   

3.
During investigations on the metabolisms of glucose by coli-aerogenes bacteria, it was found that the bacteria accumulated a large amount of α-ketoglutaric acid under aerobic conditions such as shaking culture, while lactic acid was ascertained to be produced anaerobically by the bacteria as was already known.  相似文献   

4.
The presence of glucose-6-phosphate markedly stimulated the anaerobic utilization of glyoxylate by either cell-free extracts or partially purified enzyme preparations of coli-aerogenes bacteria. The enzymic reduction of glyoxylate to glycollate was found to occur in the presence of TPN with the following substrates; glucose-6-phosphate, glucose plus ATP, gluconate plus ATP, glucose-1-phosphate or malate. The data indicated that the reduction of glyoxylate to glycollate was coupled to the oxidation of glucose-6-phosphate via the hexose monophosphate shunt pathway. It was propounded that the operation of the hexose monophosphate oxidative pathway might be controlled by TPN-linked glyoxylic reductase, and the mechanisms of enzymic regulation in microbial respiration were also discussed.  相似文献   

5.
Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence.  相似文献   

6.
Purothionins are basic polypeptides with antimicrobial properties that are present in the endosperm of wheat and other cereal species. Susceptibility to wheat purothionins among phytopathogenic bacteria of the genera Pseudomonas, Xanthomonas, Agrobacterium, Erwinia, and Corynebacterium has been investigated. Sensitive strains have been found in all of these genera except Agrobacterium (the only strain of A. tumefaciens available proved to be resistant). Minimal inhibitory concentrations (MIC) with partially purified crude purothionins ranged from 1 μg/ml for C. sepedonicum (C.5) to 540 μg/ml for E. amylovora (E.3). Minimal bactericidal concentrations (MBC) were not higher than twice the MIC value, except for C. poinsettiae (C.4) (MBC/MIC = 8). Purothionins α and β, obtained by carboxymethyl-cellulose column chromatography, were tested against P. solanacearum (P.2) and X. phaseoli (X.2); α purothionin was more active than β against X.2, and β more active than α against P.2. This suggests a relationship between polypeptide sequence and specificity of action.  相似文献   

7.
8.
A cationic benzoxazole compound used commercially as an optical brightener was found to have a selective bactericidal effect at low concentrations on a wide range of bacterial phytopathogens; many strains of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas were tested. Known phytopathogenic species of Corynebacterium, Pseudomonas and Xanthomonas were rapidly killed, whereas saprophytic strains of Corynebacterium and Pseudomonas were resistant to 500 parts/106. The phytopathogenic Erwinia spp. were inhibited only by the higher concentrations of AN, and some saprophytic E. herbicola var. herbicola strains were slightly sensitive. The extent and nature of this selective bactericidal property is examined and discussed. Resistant mutant colonies were very rarely encountered. The results are of significance in that the recognition of such phytopathogens under laboratory conditions is made easier. The resistance of Ps. aeruginosa to the compound and its almost unique ability to utilize it as a sole carbon source offer a means of isolating this organism.  相似文献   

9.
Among the 70 tested Bacillus spp. strains antagonistic to phytopathogenic fungi, 19 were found to possess chitinolytic activity when grown on solid media with 0.5% colloidal chitin. The chitinolytic activity of almost all of these 19 strains grown in liquid cultures ranged from 0.1 to 0.3 U/ml. One of the 19 strains exhibited exochitinase activity. In addition to chitinase, two strains also produced chitosanase and one strain, -1,3-glucanase. No correlation was found between the antifungal activity of the bacillar strains studied and their ability to synthesize extracellular chitinase. Among the 19 chitinolytic strains, the correlation between these parameters was also low (r x , y = 0.45), although the enzymatic preparations of most of these strains inhibited the growth of the phytopathogenic fungus Helminthosporium sativum.  相似文献   

10.
11.
The in vitro antimierobial activity of root oil of C. orchioides were studied against human pathogenic bacteria and phytopathogenic fungi by comparing the results with standard microbial susceptibility testing biodises. The oil of C. orchioides in case of bacteria shows significant activity against Bacillus anthracis, B. subtilis, Salmonella pullorum, S. newport, and Staph. aureus. While in case of fungi root oil had excellent activity against Fusarium monili forme, F. solani, Asprgullus flavus and Cladosporium and shows significant activity against all other tested fungi.  相似文献   

12.
13.
14.
Scanning electron microscopy coupled with high-resolution back-scattered electron imaging was used to detect gold-labelled specific immunoglobulins attached to epiphytic bacteria. Strains of Xanthomonas citri and X. campestris pv. citrumelo were specifically identified on grapefruit leaf surfaces when labelled with homologous gold-labelled immunoglobulins.  相似文献   

15.
16.
17.
An attempt was made to clarify how Pellicularia filamentosa f. sp. microsclerotia IFO 6298 capable of hydroxylating C21-steroids at the C-19 position converts C19-steroids, especially monohydroxyderivatives of androst-4-ene-3, 17-dione. Such substrates as 11β-hydroxyandrost-4-ene-3,17-dione (I), androst-4-ene-3, 11, 17-trione (II), androsta-1,4-diene-3, 17-dione (III), 11β-hydroxyandrosta-1,4-diene-3,17-dione (IV), 14α-hydroxyandrost-4-ene-3, 17-dione (V), 15α-hydroxyandrost-4-ene-3, 17-dione (VI) and 9α-hydroxyandrost-4-ene-3, 17-dione (VII) were converted by the organism. All the main and several minor products were then isolated and identified. As a result it is concluded that this organism converts I and II into 14α-hydroxyandrost-4-ene-3,11,17-trione, III and IV into 14α-hydroxyandrosta-1,4-diene-3,1l,17-trione, V into 11α 14α dihydroxyandrost-4-ene-3, 17-dione (main) and 11β, 14α-dihydroxyandrost-4-ene-3, 17-dione (minor, a tentative structure), VI into 11β, 15α-dihydroxyandrost-4-ene-3,17-dione (main) and 15α-hydroxyandrost-4-ene-3,11,17-trione (minor, a tentative structure) and VII into 9α, 14α-dihydroxyandrost-4-ene-3, 17-dione (main) and 6β, 9α-dihydroxyandrost-4-ene-3,17-dione (minor).

In addition, the structural requirement of substrate for the 19-hydroxylation catalyzed by the organism and the influence of a hydroxyl group on steroid nucleus upon the 11β- and 14α-hydroxylations and the 11β-OH-dehydrogenation was discussed.  相似文献   

18.
The microbiological reduction of the 20-carbonyl group of steroids has been investigated. Candida pulcherrima IFO 0964 and Sporotrichum gougeroti IFO 5982 converted the following substrates into the corresponding 20β-hydroxy derivatives (yields of the products are indicated in parentheses): Reichstein’s Compound S (60~70%) and 17α,21-dihydroxypregna-l,4-diene- 3,20-dione (40~80%). Rhodotorula glutinis IFO 0395 converted the following substrates into the corresponding 20α-hydroxy derivatives: Reichstein’s Compound S (65%), 17 α,21-dihydroxy- pregna-l,4-diene-3,20-dione (80%), llβ,l7α-dihydroxypregn-4-ene-3,20-dione (45%) and 17α, 19,21 -trihydroxypregn-4-ene-3,20-dione (10%).  相似文献   

19.
Some features of the NMR spectra of 19-hydroxy- and 19-acetoxy-steroids were presented and by making use of the features an unknown product of a microbiological transformation of 17α,20α,21-trihydroxypregn-4-en-3-one was easily characterized as a 19-acetoxysteroid.  相似文献   

20.
The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of antimicrobial cLPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号