首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This article summarizes all experimental facts concerning the cold denaturation of single-domain, multi-domain, and multimeric globular proteins in aqueous solutions with and without urea and guanidine hydrochloride. The facts obtained by various experimental techniques are analyzed thermodynamically and it is shown that the cold denaturation is a general phenomenon caused by the very specific and strongly termperature-dependent interaction of protein nonpolar groups with water. Hydration of these groups, in contrast to expectations, is favorable thermodynamically, i.e., the Gibbs energy of hydration is negative and increases in magnitude at a temperature! decrease. As a result, the polypeptide chain, tightly packed in a compact native structure, unfolds at a sufficiently low temperature, exposing internal nonpolar groups to water. The reevaluation of the hydration effect on the base of direct calorimetric studies of protein denaturation and of transfer of non-polar compounds into water leads to revision of the conventional conception on the mechanism of hydrophobic interaction. The last appears to be a complex effect in which the positive con- tributor is van der Waals interactions between the nonpolar groups and not the hydration of these groups as it was usually supposed.  相似文献   

2.
豆壳过氧化物酶的盐酸胍变性与化学修饰研究   总被引:2,自引:0,他引:2  
研究了盐酸胍对豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC1.11.1.7)构象与活力的影响,发现去辅基SHP的盐酸胍变(复)性及荧光变化关系与SHP全酶分子的盐酸胍变(复)性及荧光变化关系明显不同。应用过碘酸氧化法去除SHP分子表面糖链,研究糖链去除对酶性质的影响,则证实了SHP分子表面的糖链去除导致酶热稳定性下降。应用不同的蛋白质侧链修饰剂对SHP进行化学修饰则表明,巯基、酪氨酸和色氨酸残基为酶活力非必需,而羧基、组氨酸和精氨酸残基为酶活力所必需。  相似文献   

3.
The effects of pH and NaCl on the denaturation of plasma protein during heat treatment were investigated, as well as the relationship between protein structure and emulsifying properties. When the plasma protein solution (1% w/v) was heated at 80°C, precipitation was accelerated by the presence of NaCl. The measurement of SH groups, surface hydrophobicity and CD spectrum revealed that denaturation occurs easily by heat treatment in the neutral pH region and in the presence of NaCl. The emulsifying activity index (EAI) did not change much after heat treatment at pH 3 irrespective of the presence of NaCl, but it decreased about 60% after heat treatment at pH 7 in the absence of NaCl. Gel filtration patterns indicated that a high molecular weight peak arose upon heat treatment at neutral pH. We concluded that the decrease in EAI was owing to the polymerization of serum albumin and γ-globulin, which are the main components of plasma protein, and disulfide bonds participated in this process.  相似文献   

4.
5.
The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility.  相似文献   

6.
Soybean proteins were subjected to phosphorylation with cyclic adenosine monophosphate- dependent protein kinase (A-kinase). As a result, acidic subunits of the 11S fraction were found to be phosphorylated by A-kinase. To estimate the effect of the phosphorylation, 11S acidic subunits were isolated and subjected to A-kinase phosphorylation. The optimal enzyme amount and Mg2 + concentration for the phosphorylation of 11S acidic subunits were determined to be 1.5U/ml and 1.6 mm, respectively. The rate of phosphorylation was 2mol/mol acidic subunits (MW 38,000) under the above conditions. The protein structures of 11S acidic subunits, as determined from UV and CD spectra, were slightly affected by the enzymatic phosphorylation.  相似文献   

7.
Fluorescence spectroscopy was used to study denaturation of cAMP-dependent protein kinase catalytic subunit labeled with an acrylodan moiety. The dye was covalently bound to a cystein residue introduced into the enzyme by replacement of arginine in position 326 in the native sequence, located near the enzyme active center. This labeling had no effect on catalytic activity of the enzyme, but provided possibility to monitor changes in protein structure through measuring the fluorescence spectrum of the dye, which is sensitive to changes in its environment. This method was used to monitor denaturation of the protein kinase catalytic subunit and study the kinetics of this process as well as influence of specific ligands on stability of the protein. Stabilization of the enzyme structure was observed in the presence of adenosine triphosphate, peptide substrate RRYSV and inhibitor peptide PKI[5-24].  相似文献   

8.
The process of dehydration of soybean protein coagulate in expression involves two mechanisms, filtration and consolidation. The filtration process was explained by Ruth’s filtration model. The consolidation process, except for secondary consolidation, was analyzed by the modified consolidation model of Shirato et al., taking into account the compressibility of cake. The modified coefficient of consolidation was not affected significantly by the pressure applied. Evaluation of the modified coefficient of consolidation is of importance for an attempt to improve the current production of soybean protein.  相似文献   

9.
The involvement of protein denaturation and/or misfolding processes in the insurgence of several diseases raises the interest in structural dynamic studies of proteins. The use of nitroxide spin labels with electron paramagnetic resonance is a powerful tool for detecting structural changes in proteins. In the present study, we apply this strategy to soybean peroxidase (SBP), a protein characterised by high thermal and structural stability, and we propose a simple method to analyse the anisotropy changes of the protein system and to relate them with the structural changes induced by protein unfolding. We examined the effect of temperature, guanidine hydrochloride and dimethylsulfoxide on the stability of SBP and looked for correlations between the ESR results and the experimental findings obtained by other techniques, reported in the literature. The agreement between data obtained through different strategies supports the validity and reliability of the ESR approach to protein unfolding.  相似文献   

10.
抗鱼肉蛋白冷冻变性机理的研究进展   总被引:3,自引:0,他引:3  
简述了鱼肉蛋白冷冻变性机理的研究现状,综述了糖类、盐类、乳蛋白、不同水解物等添加物的抗冷冻变性机理,介绍了鱼肉蛋白冷冻变性的评价指标及其测定方法,展望了抗鱼肉蛋白冷冻变性的新途径及应用前景。论文内容对于深入研究抗肉类蛋白冷冻变性具有较大的参考价值。  相似文献   

11.
It is well known that proteins denature under high pressure. The mechanism that underlies such a process is still not clearly understood, however, giving way to controversial interpretations. Using molecular dynamics simulation on systems that may be regarded experimentally as limiting examples of the effect of high pressure on globular proteins, such as lysozyme and apomyoglobin, we have effectively reproduced such similarities and differences in behavior as are interpreted from experiment. From the analysis of such data, we explain the experimental evidence at hand through the effect of pressure on the change of water structure, and hence the weakening of the hydrophobic effect that is known to be the main driving force in protein folding.  相似文献   

12.
13.
When the usual assay method of proteinase using milk casein as substrate is applied to the crude extract of wheat bran culture of Aspergillus sojae KS, over 90% of the total activity at pH 7 to 8 is occupied by that of alkaline proteinase. However, lower hydrolytic activity of purified alkaline proteinase than that of crude extract was observed not only in the digestion of soybean meal but also in the digestion of soybean protein, in spite of the fact that each enzyme solution had the same proteolytic activity on milk casein. From the experiments to fractionate crude extract by chromatography on DEAE-Sephadex A-50, neutral proteinase I and II, whose contribution to the hydrolysis of milk casein was estimated to be under 10% of the total activity of crude extract, were suggested to have almost comparable effect to alkaline proteinase in the digestion, determined by the increase of 0.4 m TCA-soluble nitrogen, of soybean protein by crude extract. Based on the rapid increase of 0.4 m TCA-soluble nitrogen and slight increase of Formol-titration value, it seems that both neutral proteinase I and II act as endo-type enzyme similar to alkaline proteinase and are not effective in the liberation of low molecular peptides or amino acids.  相似文献   

14.
Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the a′ domain among the a, a′, and b domains of GmPDIM. A disulfide bond introduced into the active center of the a′ domain of GmPDIM was shown to be transferred to the active center of the a domain of GmPDIM and the a domain of GmPDIM directly oxidized the active centers of both the a or a′ domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants.In eukaryotes, many secretory and membrane proteins fold via disulfide bond formation in the endoplasmic reticulum (ER). Seed storage proteins of major crops, such as wheat, corn, rice, and beans, which are important protein sources for humans and domestic animals, are synthesized in the ER of the endosperm or cotyledon. A number of seed storage proteins fold by the formation of intramolecular disulfide bonds (oxidative folding) and are transported to and accumulate in protein bodies (Kermode and Bewley, 1999; Jolliffe et al., 2005). In contrast to normally folded proteins, misfolded and unfolded proteins are retained in the ER and degraded by an ER-associated degradation or vacuolar system (Smith et al., 2011; Pu and Bassham, 2013). Therefore, quick and efficient oxidative folding of nascent seed storage proteins is needed for their accumulation in protein bodies.During this process, protein disulfide isomerase (PDI; EC 5.3.4.1) and other ER protein thiol disulfide oxidoreductases (ER oxidoreductases) are thought to catalyze the formation and isomerization of disulfide bonds in nascent proteins (Hatahet and Ruddock, 2009; Feige and Hendershot, 2011; Lu and Holmgren, 2014). After phylogenetic analysis of the Arabidopsis genome, 10 classes of ER oxidoreductases (classes I–X) were identified (Houston et al., 2005). Among them, class I ER oxidoreductase, a plant PDI ortholog, has been studied in a wide variety of plants. Class I ER oxidoreductases have two catalytically active domains a and a′, containing active centers composed of Cys-Gly-His-Cys and two catalytically inactive domains b and b′. An Arabidopsis ortholog of class I ER oxidoreductases is required for proper seed development and regulates the timing of programmed cell death by chaperoning and inhibiting Cys proteases (Andème Ondzighi et al., 2008). OaPDI, a PDI from Oldenlandia affinis, a coffee family (Rubiaceae) plant, is involved in the folding of knotted circular proteins (Gruber et al., 2007). The rice ortholog (PDIL1-1) was suggested to be involved in the maturation of the major seed storage protein glutelin (Takemoto et al., 2002). Furthermore, rice PDIL1-1 plays a role in regulatory activities for various proteins that are essential for the synthesis of grain components as determined by analysis of a T-DNA insertion mutant (Satoh-Cruz et al., 2010).The oxidative refolding ability of class I ER oxidoreductases was confirmed in recombinant soybean (GmPDIL-1) and wheat proteins produced by an Escherichia coli expression system established from cDNAs (Kamauchi et al., 2008; Kimura et al., 2015).Class II and III ER oxidoreductases have an a–b–b′–a′ domain structure. Class II ER oxidoreductases have an acidic amino acid-rich sequence in the N-terminal region ahead of the a domain. Recombinant soybean (GmPDIL-2) and wheat class II ER oxidoreductases have oxidative refolding activities similar to that of class I (Kamauchi et al., 2008; Kimura et al., 2015). Class III ER oxidoreductases contain the nonclassical redox-center Cys-X-X-Ser/Cys motifs, as opposed to the more traditional CGHC sequence, in the a and a′ domains. Recombinant soybean (GmPDIL-3) and wheat proteins lack oxidative refolding activity in vitro (Iwasaki et al., 2009; Kimura et al., 2015). Class IV ER oxidoreductases are unique to plants and have an a–a′–ERp29 domain structure, which is homologous to the C-terminal domain of mammalian ERp29 (Demmer et al., 1997).Recombinant soybean class IV ER oxidoreductases (GmPDIS-1 and GmPDIS-2) and wheat class IV ER oxidoreductase possess an oxidative refolding activity that is weaker than that of classes I and II (Wadahama et al., 2007; Kimura et al., 2015). Class V ER oxidoreductases are plant orthologs of mammalian P5 and have an a–a′–b domain structure. A rice class V ER oxidoreductase, consisting of PDIL2 and PDIL3, plays an important role in the accumulation of the seed storage protein Cys-rich 10-kD prolamin (crP10; Onda et al., 2011). Recombinant soybean class V ER oxidoreductase, GmPDIM and wheat class V ER oxidoreductase possess an oxidative refolding activity similar to that of class IV (Wadahama et al., 2008; Kimura et al., 2015). In the soybean, GmPDIL-1, GmPDIL-2, GmPDIM, GmPDIS-1, and GmPDIS-2 were found to associate transiently with a seed storage precursor protein, proglycinin, in the ER of the cotyledon by coimmunoprecipitation experiments, suggesting that multiple ER oxidoreductases are involved in the folding of the nascent proglycinin.The disulfide bond in the active center of ER oxidoreductases is reduced as a result of catalyzing disulfide bond formation in an unfolded protein. The reduced active center of PDI was discovered to be oxidized again by ER oxidoreductin-1 (Ero1p) in yeast (Frand and Kaiser, 1998; Pollard et al., 1998). Ero1p orthologs are present universally in eukaryotes. Yeast and flies have a single copy of the ERO1 gene, which is essential for survival (Frand and Kaiser, 1998; Pollard et al., 1998; Tien et al., 2008). Mammals have two genes encoding Ero1-α (Cabibbo et al., 2000) and Ero1-β (Pagani et al., 2000) that function as major disulfide donors to nascent proteins in the ER, but are not critical for survival (Zito et al., 2010). Domain a of yeast PDI is the most favored substrate of yeast Ero1p (Vitu et al., 2010), whereas a′ of human PDI is specifically oxidized by human Ero1-α (Chambers et al., 2010) and Ero1-β (Wang et al., 2011). Electrons from Cys residues of the active centers of PDI are transferred to oxygen by Ero1 (Tu and Weissman, 2004; Sevier and Kaiser, 2008). The reaction mechanisms of yeast Ero1p and human Ero1s have been intensively investigated; their regulation by PDI has been extensively studied as well (Tavender and Bulleid, 2010; Araki and Inaba, 2012; Benham et al., 2013; Ramming et al., 2015). Only rice Ero1 (OsERO1) has been identified as a plant ortholog of Ero1p (Onda et al., 2009). OsERO1 is necessary for disulfide bond formation in rice endosperm. The formation of native disulfide bonds in the major seed storage protein proglutelin was demonstrated to depend upon OsERO1 by RNAi knockdown experiments. However, no plant protein thiol disulfide oxidoreductases that are oxidized by a plant Ero1 ortholog have been identified to date.In this study, we show that multiple soybean ER oxidoreductases can be activated by a soybean Ero1 ortholog (GmERO1a). In addition, we propose a synergistic mechanism by which GmPDIM and GmPDIL-2 cooperatively fold unfolded proteins using oxidizing equivalents provided by GmERO1 in vitro.  相似文献   

15.
The denaturation of bacteriorhodopsin by various organic solvents was studied using absorption, circular dichroism (CD) and fluorescence measurements. Organic solvents with a hydrogen-bonding group caused the release of retinal. The CD measurements showed that the helical structure was maintained even in the denatured state, whereas its tertiary structure was destroyed. The change in fluorescence intensity of tryptophan and fluorescent retinal also confirmed that the tertiary structure was destroyed. Comparison of the denaturation efficiency of various organic solvents showed that the concentration at denaturation was inversely proportional to the partition coefficient of the denaturant. This inverse proportionality clearly indicated that denaturation was determined by the concentration of denaturants which partitioned into the hydrophobic region of the membrane. It was discussed from the experimental results that the tertiary structure of bacteriorhodopsin was stabilized by the hydrogen-bonding networks between side chains of the helices. The results obtained from analysis of the amino acid sequence were also consistent with the hydrogen-bonding mechanism for the formation of the tertiary structure.  相似文献   

16.
Denaturation of proteins by fatty acids   总被引:1,自引:0,他引:1  
  相似文献   

17.
Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 µs of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted) for hyperpolar urea. These results strongly suggest that apolar urea–protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity.  相似文献   

18.
19.
20.
目的:通过农杆菌介导法遗传转化大豆。方法:通过热激法将质粒pCAAFP66导入根癌农杆菌菌株EHA105中获得含有抗冷冻蛋白基因(afp)及除草剂抗性筛选标记基因(bar)的农杆菌工程菌株;以大豆品种华春6号和马祖1号种子的下胚轴为外植体,经过农杆菌介导将抗冷冻蛋白基因导入大豆基因组中,在含有除草剂草丁膦(PPT)的培养基中筛选、并经过PCR鉴定获得大豆转化植株。结果:PPT的最佳筛选浓度为1.0mg/L,华春6号和马祖1号的阳性植株数分别为6株和2株,转化效率分别为3.70%和0.94%。结论:不同基因型大豆的转化率存在差异,抗冷冻蛋白基因成功遗传转化进大豆细胞中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号