首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
脱硫工程菌的构建及其脱硫性能分析   总被引:1,自引:0,他引:1  
以专一性脱硫菌德氏假单胞菌Pseudomonas delafieldii R-8为出发菌株, 利用pPR9TT穿梭质粒构建脱硫操纵子表达载体, 转化原始菌培养得到1株多拷贝脱硫基因的脱硫工程菌R-8-1, 并对其脱硫性能进行了研究。结果表明, 在同样的生物催化脱硫反应条件下, 工程菌的脱硫活性达到6.25 mmol DBT/g dry cell/h, 是原始菌的2倍; 柴油的脱硫试验表明, 在12 h内工程菌静息细胞能将柴油硫含量从310.8 mg/L降至100.1 mg/ L, 脱硫率达到68%, 而原始菌为53%。进一步比较了重组质粒pPR-dsz在工程菌株中传代的稳定性, 试验表明pPR-dsz在工程菌株R-8-1中具有良好的遗传稳定性。此研究为生物脱硫提供了1株优良的工程菌株, 并为该技术的应用提供了参考。  相似文献   

2.
The car and ant operons originally isolated from Pseudomonas resinovorans strain CA10 contain the genes encoding the carbazole/dioxin-degrading enzymes and anthranilate 1,2-dioxygenase, respectively, and are located on the plasmid pCAR1. The entire nucleotide sequence of pCAR1 was determined to elucidate the mechanism by which the car operon may have been assembled and distributed in nature. pCAR1 is a 199,035-bp circular plasmid, and carries 190 open reading frames. Although the incompatibility group of pCAR1 is unclear, its potential origin for replication, OriP, and Rep and Par proteins appeared to be closely related to those of plasmid pL6.5 isolated from Pseudomonas fluorescens. The potential tellurite-resistance klaABC genes identified in the neighboring region of repA gene were also related to those in IncP plasmid originally identified from pseudomonads. On the other hand, we found genes encoding proteins that showed low but significant homology (20-45% identity) with Trh and Tra proteins from Enterobacteriaceae, which are potentially involved in conjugative transfer of plasmids or genomic island, suggesting that pCAR1 is also a conjugative plasmid. In pCAR1, we found tnpAcCST genes that encoded the proteins showing >70% length-wise identities with those are encoded by the toluene/xylene-degrading transposon Tn4651 of TOL plasmid pWW0. Both car and ant degradative operons were found within a 72.8-kb Tn4676 sequence defined by flanking tnpAcC and tnpST genes and bordered by a 46-bp inverted repeat (IR). Within Tn4676 and its flanking region, we found the remnants of numerous mobile genetic elements, such as the duplicated transposase genes that are highly homologous to tnpR of Tn4653 and the multiple candidates of IRs for Tn4676 and Tn4653-like element. We also found distinct regions with high and low G+C contents within Tn4676, which contain an ant operon and car operon, respectively. These results suggested that multiple step assembly could have taken place before the current structure of Tn4676 had been captured.  相似文献   

3.
d,l-Derrisic acid (IIa, R′: H) was synthesized from d,l-hydroxy dihydrotubanol (Ve) by Hoesch condensation with a nitrile (VI). The possible optical resolution of d,l-IIa was demonstrated by a conventional “reversed resolution” method.

This communication and previous works constitute the first total synthesis of natural rotenone (Ia).  相似文献   

4.
Novel putative pyoverdine synthetase pvdIJK genes were found upstream of pvdD in the 6.2-Mb chromosome of Pseudomonas aerugilosa strain PAO1. These genes formed a locus implicated in pyoverdine biosynthesis. Sequence analysis showed that the product of these genes shared 43%, 60% and 57% identity with PvdD. PvdIJK are thought to be implicated in synthesis of pyoverdine, a siderophore chelating Fe3+. A pvdI mutant was obtained by gene disruption mutagenesis and confirmed by Southern hybridization. The pvdl mutant produced gave no significant growth on solid media supplemented with the iron chelator 2,2-dipyridyl; while the PvdI- phenotype abolished pyoverdine fluorescence. The role of PvdI in pathogenicity was tested by measuring the in vivo growth of P. aeruginosa wild-type and mutant strains in a chronic lung infection rat model, and by measuring the competitive infectivity index into a neutropenic mice model. The data obtained confirmed the importance of PvdI in virulence and iron uptake.  相似文献   

5.
During degradation of aniline and 3-chloroaniline, respectively, by Pseudomonas acidovorans CA28, selective induction of two catechol 1,2-dioxygenases (C12O) was observed. C12O I activity was the sole ring-cleaving enzyme detectable in cell-free extracts after growth on aniline, while C12O II was exclusively found after growth on 3-chloroaniline. Both enzymes were clearly differentiated by their elution behaviour on DEAE-cellulose and their substrate specificities. For C12O I high activity was demonstrable only with unsubstituted catechol, while C12O II showed preference for and high affinity towards chlorinated catechols. Therefore, evidence of different ortho-cleavage enzymes in Pseudomonas acidovorans CA28 involved in aniline and 3-chloroaniline metabolism, respectively, is indicated.  相似文献   

6.
A series of cephalosporins, 2-isocephems, and 2-oxaisocephems with C-3′ catechol-containing (pyridinium-4-thio)methyl groups and 2-isocephems with C-7 catechol related aromatics have been prepared and evaluated for antimicrobial activity. It turns out that these compounds have highly potent activity against Gram-negative bacteria, especially resistant pathogens such as Pseudomonas aeruginosa. The most active compound of the series was (6S,7S)-7-[2-(2-aminothiazol-4-yl)-2-[(Z)-[(1,5-dihydroxy-4-pyridon-2-yl)methoxy] imino]acetamido]-3-[[[(4-methyl-5-carboxymethyl)thiazol-2-yl]thio]methyl]-8-oxo-1-aza-4-thiabicyclo [4.2.0] oct-2-ene-2-carboxylic acid which exhibited potent in vitro activity against clinically isolated P. aeruginosa and Acinetobacter baumanii which is also resistant to many anti-infectives, and good in vivo efficacy against clinically isolated P. aeruginosa.

A series of cephalosporins, 2-isocephems, and 2-oxaisocephems and C-3′ or C-7 catechol or related aromatics have been prepared and evaluated for antibacterial activity.  相似文献   


7.
Abstract

The popular demand for natural food additives has resulted in a number of processes for producing natural vanillin. Although there are chemical procedures and plant sources for vanillin production, microbial bioconversions are being sought as a suitable ‘natural’ alternative. The present paper describes the conversion of isoeugenol to vanillin by a novel bacterial strain isolated from soil. The strain was identified as Pseudomonas sp. strain KOB10 based on morphological and physiochemical characteristics and its 16S rDNA gene sequence. We optimized medium composition for vanillin production using a Taguchi experimental design. Eight factors, i.e. isoeugenol, glycerol, tryptone, K2HPO4, KH2PO4, Cu2+, Mg2+ and Ca2+ concentrations, were selected and experiments based on an orthogonal array layout of L18 (22 × 36) were performed. Analysis of the experimental data using the Taguchi method indicated that Cu2+ and glycerol concentrations had the highest impact on isoeugenol conversion into vanillin at a substrate concentration of 0.9 g L?1. Under the optimized conditions, growing cells of Pseudomonas sp. strain KOB10 produced 0.153 g vanillin L?1 from 0.9 g isoeugenol L?1, with a molar yield of 18.3% after incubation for 48 h. To improve the vanillin yield, the effect of other bioconversion parameters including time of isoeugenol addition, initial isoeugenol concentration and conversion time was studied; the results showed a maximum concentration of 3.14 g vanillin L?1 after a total incubation time of 88 h with 15 g isoeugenol L?1, which corresponded to a molar yield of 22.5%. Further standardization and optimization for vanillin production was challenging.  相似文献   

8.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

9.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

10.
11.
The ohp operon of Rhodococcus strain V49 consists of five genes, ohpR, ohpA, ohpB, ohpC and ohpD which encode putative regulator and transport proteins and confirmed monooxygenase, hydroxymuconic semialdehyde hydrolase and catechol 2,3-dioxygenase enzymes, respectively. These enzymes catalyse the conversion of 3-(2- hydroxyphenyl)propionic acid to the corresponding linear product via a meta-cleavage pathway. Confirmation that the ohp gene cluster formed an operon was provided by gene disruption during which expression of Bacillus levansucrase was confirmed in Rhodococcus. Following biochemical assays of cell-free extracts from recombinant Escherichia coli expressing ohpB (monooxygenase), ohpC (hydroxymuconic-semialdehyde hydrolase) and ohpD (catechol 2,3-dioxygenase), the ortho-hydroxyphenylpropionic acid catabolic pathway in Rhodococcus strain V49 (ATCC 19070) has been predicted.  相似文献   

12.
One to four routes of synthesis are described for 8′-hydroxyrotenone, 5′-hydroxyrotenone, two epimers of 6′,7′-dihydro-6′,7′-dihydroxyrotenone, two epimers of 6′,7′-epoxyrotenone and the four rotenolones derived from each of these compounds. The stereochemical relationships are determined, in each case, by chemical interconversion, ORD and monochromatic rotation to assess the absolute configuration of the B/C ring juncture and by IR, MS and NMR for the cis- or trans-nature of this juncture. The new compounds described are useful standards for studies on the metabolites and photodecomposition products of rotenone insecticide chemical.  相似文献   

13.
Pseudomonas putida Fl oxidizes toluene through cis-toluene dihydrodiol to 3-methylcatechol. The latter compound is the substrate for “meta” fission of the aromatic nucleus. Kinetic and induction experiments indicate that the genes encoding enzymes for these reactions are part of an operon, designated the tod operon, that is coordinately induced and regulated. Strains unable to utilize toluene as a growth substrate were isolated at high frequencies by using screening procedures that utilize the redox dye, 2,3,5-triphenyl-2H-tetrazolium chloride. Biochemical characterization of strains with mutations in the structural genes of the tod operon showed that toluene induces the first four enzymes in toluene degradation by P. putida Fl. The isolation and characterization of pleiotropicnegative mutants together with mutants altered in terms of their expression of tod genes suggests that the tod operon may be under the control of a positive regulatory element.  相似文献   

14.
Abstract This paper is the first to describe the transformation of 3-hydroxybenzoate (3-HBA) by Pseudomonas putida BS893 by a new pathway via 2,3-dihydroxybenzoate (2,3-DBA) and catechol. We have compared the intermediates and appropriate enzyme activities in P. putida BS893 (pBS241) and in a cured derivative BS662 (Bph) thereof, for the ascertainment of plasmid or chromosomal genetic control over 3-HBA-catabolism. The results presented show that catabolism of 3-HBA in P. putida BS893 (pBS241) is controlled by chromosomal genes.  相似文献   

15.
Antimycinone A3, which is a neutral fragment of mild alkaline hydrolysate of antimycin A3, and its stereoisomers were synthesized stereoselectively from methyl trans-2-n-butylpent-3-enoate or methyl cis-2-n-butylpent-3-enoate, and natural antimycinone A3 was proved to possess Hα-Hβ and Hβ-Hγ trans configuration.  相似文献   

16.
The activities of the TOL plasmid-coded xylene oxygenase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase of Pseudomonas putida strain PaW1 were tested with substituted toluenes, benzylalcohols and benzaldehydes, respectively, as substrates. Several chlorinated toluenes were shown to induce enzymes of the xylene degradation sequence. Conjugative transfer of the TOL plasmid from Pseudomonas putida strain PaW1 to Pseudomonas sp. strain B13 and Pseudomonas cepacia strain JH230 allowed the isolation of hybrid strains capable of growing in the presence of 3-chloro-, 4-chloro- and 3,5-dichlorotoluene. Hybrid strains revealed new ways to prevent the dead-end meta-pathway for cholorocatechols.  相似文献   

17.
Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts.  相似文献   

18.
19.
pCAR1 and pCAR2 are IncP-7 self-transmissible carbazole degradative plasmids. Their respective hosts showed clearly different conjugative host ranges. Their complete nucleotide sequences were virtually the same, and can be regarded as structurally the same plasmid, indicating that the difference in the conjugative host range was caused by host cell backgrounds.  相似文献   

20.
Molecular analyses of the sediment of the 11000-m deep Mariana Trench   总被引:10,自引:1,他引:10  
We have obtained sediment samples from the world's deepest sea-bottom, the Mariana Trench challenger point at a depth of 10 898 m, using the new unmanned submersible Kaiko. DNA was extracted from the sediment, and DNA fragments encoding several prokaryotic ribosomal RNA small-subunit sequences and pressure-regulated gene clusters, typically identifed in deep-sea adapted bacteria, were amplifed by the polymerase chain reaction. From the sequencing results, at least two kinds of bacterial 16S rRNAs closely related to those of the genus Pseudomonas and deep-sea adapted marine bacteria, and archaeal 16S rRNAs related to that of a planktonic marine archaeon were identifed. The sequences of the amplifed pressure-regulated clusters were more similar to those of deep-sea barophilic bacteria than those of barotolerant bacteria. These results suggest that deep-sea adapted barophilic bacteria, planktonic marine archaea, and some of the world's most widespread bacteria (the genus Pseudomonas) coexist on the world's deepest sea-bottom. Received: October 10, 1996 / Accepted: March 3, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号