首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amazonian várzea forests are floodplains inundated by nutrient-rich white-water rivers occurring along the Amazon River. They are regularly flooded for up to 210 days per year by water columns of 10–15 m. Topographic variation results in different flooding amplitudes and durations along the flooding gradient, where the different tolerance to flooding of different plant species results in a vegetation zonation. We made a review of literature about the vegetation composition ofvárzea floodplain forests of Brazilian Amazonia along the Amazon River. Twenty-two studies were selected. Basing on the distribution of inventories which are concentrated in three main areas around the three larger cities Belém, Manaus and Tefé, we classified the inventories into three regions: (A) Estuary region with flooding regime influenced by daily inundations linked to the tides; (B) Central Amazonia near Manaus; (C) Western part of Brazilian Amazonia bordering Peru and Colombia, including Tefé and the “Reserva de Desenvolvimento Sustentável Mamirauá”. Summarizing the analyzed species lists, 36 tree species were registered in all sampled regions including the estuary. The regions A +C have 63 species in common, region B+C 143, and A+B 50. In the inventories analyzed here, an increase in species numbers from East to West can be confirmed, but it is difficult to state whether this is not an artefact due to local sampling. Vertical zonation patterns are difficult to discuss due to the lack of comparable data. The inventoried areas are small, and there is an urgent need for comparable floristic inventories throughout the basin. Destruction is spreading rapidly and the traditional use of forests and its resources is changing to a destructive exploitation that already has changed much of the physiognomy and diversity of this unique ecosystem.  相似文献   

2.
Bee flies (Bombyliidae) were recorded as parasitoids of larval tiger beetles at two rain forest localities (near São Paulo and Manaus) in Brazil. Anthrax gideon was reared from larvae of Oxycheila tristis. Up to 33 parasitoid larvae were found on a single tiger beetle host. Pupation of the bee fly took place in late August and the pupal stage lasted 14 days. The host digs horizontal burrows in contrast to the great majority of cicindelids, as does Pseudoxycheila tarsalis, the other known host of A. gideon. Two pupae of another undetermined Anthrax species were reared from larvae of Pentacomia ventralis in Central Amazonia. Pupation of this Anthrax sp. took place in October, the period of lowest host abundance.  相似文献   

3.
The alpha-diversity of trees found in the region of Manaus, Brazil is among the highest recorded for one-hectare plots in Amazonia or any tropical forest. Based on a survey of the distributions of 2541 Neotropical tree species, we analyzed the geographic distribution of 364 species of terra firme forest trees that occur in the region and that are not edaphic specialists. Fifteen distinct distribution patterns were recognized for trees occurring in Manaus. The great majority of species (84.9%) have continuous, somewhat restricted distributions, 35 (9.6%) show broad distributions and 20 species (5.5%) show disjunction between Amazonia and Eastern Brazil. A remarkable 150 (41.2%) of these species showed the region of Manaus as one of their distribution limits. Using the same pool of 2541 species distributions, the percentage of species with a distribution limit in Manaus was compared with that for other localities known to be centers of botanical collection. The null hypothesis that the difference in proportion of species with distribution limits among these localities and Manaus is insignificant was rejected. We conclude that the results are not an artifact of collecting density, that Manaus is indeed a crossroads of distinct phytogeographic regions, and that this explains part of the high species diversity of trees in the region of Manaus. A number of scenarios proposed for the Pleistocene in Amazonia postulate some degree of fragmentation of Amazonian forests or at least populations. As much as these theories may conflict with each other in some respects, they are compatible with the concept of Manaus as a region of re-convergence of isolated or disrupted floras and faunas. The significance of the vicinity of Manaus in the history of the Amazon flora and its current status as a repository for surprisingly high tree diversity highlights the need to make this region a conservation priority.  相似文献   

4.
A comparative study of albumin variants found in Brazil   总被引:2,自引:0,他引:2  
10 rare albumin variants found in Brazil have been compared with 6 others, discovered elsewhere, through horizontal starch gel electrophoresis in four buffer systems. Belém V can be clearly distinguished from Naskapi but shows the same mobility as Máku (= Belém III) in two different pHs. Coari II, Manaus I and Porto Alegre II can be separated from all others in three buffer systems. Belém II (= Mexico) and Belém I also show unique patterns, but Coari I, Porto Alegre I and Belém IV could not be distinguished from Santa Ana. The possibly synonymous Belém III-Belém V-Máku should have originated from an Amerindian gene pool, but Coari I-Porto Alegre I-Belém IV-Santa Ana may have a Caucasoid origin.  相似文献   

5.
We investigated the effects of forest fragmentation on bird assemblages in an Amazonian savannah landscape with forest fragments that have been isolated for more than 100 years. The study was conducted in areas surrounding the village of Alter do Chão (2°31′S, 55°00′W), Santarém, Brazil. Bird surveys and measurements of tree density were undertaken in 25 areas, with 19 plots in forest fragments of different sizes and six in an area of continuous forest. Data on forest‐fragment size, perimeter, and isolation were obtained from a georeferenced satellite image. Variation in number of bird species recorded per plot was not related to vegetation structure (tree density). The number of bird species recorded per plot increased significantly only with fragment area, but was not influenced by fragment shape or degree of isolation, even when considering species from the savannah matrix in the analysis. Fragments had fewer rare species. Multivariate ordination analyses (multiple dimensional scaling, [MDS]) indicated that bird species composition changed along a gradient from small to large forest fragments and continuous‐forest areas. In the Amazonian savannah landscapes of Alter do Chão, the organization and composition of bird assemblages in forest fragments are affected by local long‐term forest‐fragmentation processes. Differences in the number of bird species recorded per plot and assemblage composition between forest fragments and continuous forest were not influenced by forest structure, suggesting that the observed patterns in species composition result from the effects of fragmentation per se rather than from preexisting differences in vegetation structure between sites. Nevertheless, despite their long history of isolation, the forest fragments still preserve a large proportion (on average 80%) of the avifauna found in continuous‐forest areas. The fragments at Alter do Chão are surrounded by natural (rather than planted) grassland, with many trees in the savannah matrix and the landscape has vast areas covered by forest, which may have helped to ameliorate the influences of forest fragmentation.  相似文献   

6.
We compare results of parallel ground and canopy netting of bats (Microchiroptera) in three adjacent forest sites near Belém, Brazil, to document possible differences in vertical distribution of species. We caught 1871 individuals representing 49 species of three families (Emballonuridae, Phyllostomidae, Vespertilionidae). Capture effort, totaling 1955.5 mistnet hours in several cycles over a two-year period, was similar for ground and canopy nets. The canopy rigs yielded more species (n = 41) than the ground nets (n = 35), but both samples were characterized by rank abundance curves with similar shape and with a dominance of frugivores (Phyllostomidae). Nearly half (n = 24) of the species were captured in numbers too small (n < 6) to allow firm classification, but differences in capture frequencies of some of the better-sampled species in high and low nets reveal vertical stratification. Species-specific differences in diet, foraging strategies, roost sites, and sampling bias contribute to this pattern. As a result of the differential use of space among bats, alterations of forest structure are likely to result in changes in structure and function of local bat communities, but our limited knowledge of natural history and ecology of many species limits definition of changes. We see a critical need for further research into the extent to which habitat complexity influences species richness and abundance of bats. This information is especially important in view of the need to develop and apply conservation-oriented programs to maintain biodiversity. A review of recent improvements in techniques for inventorying bats shows that a combination of methods, including mistnetting and acoustic monitoring, is mandatory for such studies.  相似文献   

7.
Fragmentation of lowland tropical rain forests has resulted in loss of animal and plant species and isolation of remaining populations that puts them at risk. At Los Tuxtlas. Mexico, lowland rain forests are particularly diverse in the bat fauna they contain and while most of the forests have been fragmented by human activity, many of the fragments still harbor diverse assemblages of bat species. To assess the effectiveness of corridors, among other options, to ameliorate the negative effects of fragmentation, we investigated bat species richness and relative abundance in one 6 km long section of live fences (LF) bordering a dirt road and in three 6 km long sections of residual forest vegetation along the sides of three permanent streams (BS. MS. HS). Netting of bats resulted in the capture of 967 bats. At the LF site we captured 12 bat species. 15 at the BS site. 18 at the MS site and 23 at the HS site. Species richness was associated with average area of forest fragments within a 1000 m band on each side of each corridor (r = 0.97. p = 0.01). Only 28% of the species were common among sites. Frugivorous and insectivorous species accounted for 48% each of bat captures while nectarivores accounted for 3%, sanguinivores for 0.5% and carnivore-frugivores for 0.5% Edge habitat species such as Pteronotus parnelli and Sturnira lilium accounted for 50% of the captiures. Frugivorous species such as Carollia brevicauda. Vampyrodes caraccioli. Dermanura phaeotis, D. toltecus and A. jamaicensis accounted for another 25% of bat captures. Recaptures of bats indicated bat movements from forest fragments to corridors and between corridors, with recapture distances ranging from 200 to 2000 m. Within corridor recaptures separated by several months from the original recapture date indicated individual bat revisitation to these sites. We discuss the value of these corridors to bats as stepping stones in the fragmented landscape.  相似文献   

8.
Abstract We investigated the effect of forest fragmentation on the abundance of the gekkonid lizards Coleodactylus amazonicus and Gonatodes humeralis in fragments associated with Amazonian savanna near Alter do Chão, Pará, Brazil. These fragments have been isolated for at least 150 years and probably more. Abundance of lizards, tree density and food availability were estimated in 1000‐m transects in eight sites in continuous forest and 21 forest fragments, ranging in size from 3.6 to 360 ha and distant from ~150–10 000 m from continuous forests. Coleodactylus amazonicus was at least an order of magnitude more adundant than G. humeralis in continuous forest, and both species were negatively affected by fragmentation. Coleodactylus amazonicus was encountered only in continuous forest, the largest fragment, and one fragment adjacent to continuous forest. Gonatodes humeralis occurred in the majority of fragments, but was more common in continuous forest, and occurred in lower densities in fragments more distant from continous forest. The species with lowest recorded densities in continuous forest was the most resistant to fragmentation, contrary to what would be predicted from neutral models, such as island‐biogeography theory, possibly because other factors are more important than initial population size in long‐term fragmented landscapes.  相似文献   

9.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

10.
Å. Berg 《Bird Study》2013,60(3):355-366
This study investigated the importance of habitat quality and habitat heterogeneity for the abundance and diversity of breeding birds in continuous forest and in forest fragments surrounded by farmland in central Sweden. Positive correlations were found between species number and area, volume of Aspen Populus tremula and habitat heterogeneity. Spatial segregation of habitats at a relatively fine-grained scale is suggested to allow for the co-occurrence of more species. The abundance of at least 18 of the species in this study was influenced by fragmentation, and nine of these species preferred fragments to forest sites. The total density of birds was higher in fragments than in forest sites, probably because several fragment species forage in farmland surrounding the sites and a few also forage at edges. Nine species were more common in forest sites than in fragments, but only one species was restricted to continuous forest. However, several fragments were relatively close to forests (150 m) and forest was common in larger scale contexts. The abundance of most species (25 of 33 species) in this study was correlated with habitat quality variables (i.e. variables measuring the size, volume and diversity of ‘tree species’). Among these habitat variables the most important was the occurrence of deciduous trees which seemed to be important for 14 species. The second most important habitat factor seemed to be the diameter of trees, which was positively correlated with the abundance of eight species of which five are hole-nesters. Among coniferous trees, six species were positively correlated with the volume of Norway Spruce Picea abies, whereas no species seemed to be correlated with the volume of Pine Pinus sylvestris.  相似文献   

11.
Effects of fragmentation on biodiversity have received much attention in recent decades, as fragmentation can greatly reduce viable areas for living organisms. We studied its effect on Thamnophilus stictocephalus (Thamnophilidae), an understory bird, in semideciduous forest fragments in Alter-do-Ch?o, Santarém, Pará. We tested whether the density of Thamnophilus stictocephalus was a function of fragment size and shape, density of vegetation, or arthropod biomass. Density of Thamnophilus was positively related to fragment size, but not to the other factors analyzed. Arthropod biomass was positively related to fragment size. The density of T. stictocephalus in fragments was significantly higher than it was in continuous forest. Fragmentation processes had a pronounced effect on the relative density of T. stictocephalus.  相似文献   

12.
A new species of Characidae, Moenkhausia celibela, is described from the Rio Amazonas at Santarém, Rio Maraú, several localities in the Rio Tapajós, Rio Curuá‐Una, Rio Xingu and Rio Jari, all from the Amazon basin, Brazil. The new species is distinguished from its congeners, except species included in Géry's 1992 Moenkhausia lepidura group, by presenting a dark blotch on the upper caudal‐fin lobe, and the lower lobe is hyaline or light grey. Moenkhausia celibela is distinguished from the species of the M. lepidura group by the absence of a humeral spot and the presence of a roughly triangular and dark spot at the caudal‐fin base, extending posteriorly along the middle caudal‐fin rays, and distinctly separate from the spot on the upper caudal‐fin lobe.  相似文献   

13.
Faced with the rapid and extensive conversion of tropical rain forests to pasture lands and agricultural fields and with the need to preserve the remaining mammalian fauna, it is imperative to determine how the different species that form the mammalian community have responded to the anthropogenic alterations of their natural habitats To provide data in this direction, we sampled bats m 45 forest islands, m 20 agricultural habitats representing five types of vegetation (cocoa, coffee, mixed, citrus and allspice), in four live-fence sites and in four pasture sites at Los Tuxtlas, Veracruz, Mexico Sampling effort resulted in the capture of 2587 bats representing 35 species In forest habitats we detected 32 species We did not capture any bats at the four pasture sites, but the at the other agricultural habitats studied, we captured 38% of the bats and 77% of the species recorded Thirty-four percent of the species recorded were present at the live-fence habitats Isolating distance was an important variable influencing species richness in forests and in agricultural habitats Only 10% of the species recorded occurred m all the habitats studied, but 77% of the species occurred m a habitat other than ram forest Recaptures of bats indicated inter habitat movements in the fragmented landscape We discuss the conservation value for the bat fauna of agricultural islands of vegetation as elements reducing isolating distances among forest fragments  相似文献   

14.
Naiara Pinto  Timothy H. Keitt 《Oikos》2008,117(11):1725-1731
Despite vast evidence of species turnover displayed by Neotropical bat communities in response to forest fragmentation, the exact shape of the relationship between fragment area and abundance for individual bat species is still unclear. Bats’ ample variation in diet, morphology, and movement behaviour can potentially influence species’ perception of the landscape. Thus, studies describing fragment area at a single spatial scale may fail to capture the amount of forest available from the perspective of individual bat species. In the present paper, we study the influence of forest cover on bats inhabiting a fragmented forest in Mexico, focusing on some of the most common frugivore species: Artibeus jamaicensis, Carollia spp. (C. brevicauda/C. perspicillata) and Sturnira spp. (S. lilium/S. ludovici). We quantified forest cover at scales ranging from 50 to 2000 m, and measured the influence of forest cover on bat capture success, a surrogate for abundance. The three species displayed positive and significant scale‐dependent associations with forest cover. Abundance of A. jamaicensis increased with forest cover measured at scales ranging between 500 and 2000 m, while Carollia spp. responded more strongly to variation in forest cover measured at scales 100–500 m. For Sturnira spp., abundance was a function of presence of creeks near mist‐netting sites, and amount of secondary forest present at a 200 m scale. The observed variation in responses to forest cover can be explained in light of interspecific differences in diet, home range, and body size. Our results illustrate a method for measuring the effect of forest fragmentation on mobile species and suggest that changes in abundance in fragmented landscapes emerge from the interaction between species’ traits and landscape structure.  相似文献   

15.
To test the influence of the largest Central Amazon fish consumption centre on the potential fish population recruitment, young‐of‐the‐year (YOY) abundances of matrinxã Brycon amazonicus (Spix and Agassiz, 1829), jaraquis Semaprochilodus insignis (Jardine and Schomburgk, 1841), S. taeniurus (Valenciennes, 1821) and tambaqui Colossoma macropomum (Cuvier, 1818) were estimated in two floodplain areas of the middle Solimões‐Amazon River – one near the city of Manaus and the other 500 km from Manaus – in the 2007–2008 flooding. Matrinxã presented the highest abundance among the four species, with 87.8% of captured individuals. The difference was significant in the representation of YOY matrinxãs between the two studied areas, with the input more significant in the last months of flooding in the area 500 km from Manaus. Jaraquis represented 12.1% of captures and showed no difference between areas. Tambaqui abundance was shown to be critical in both areas, with the capture of only 28 YOY (0.1%), and with no differences between the two floodplains. Matrinxã and jaraquis are more likely to present stabile stocks in the middle Solimões‐Amazon River; on the other hand, matrinxã requires attention due to differences in the YOY input between the two areas and in their low input in the Upper Amazon River, near Manaus. Based on the present work and on the landing history in Manaus, tambaqui is still considered as under strong overexploitation, showing some of the characteristics of overfishing recruitment in the middle Solimões‐Amazon.  相似文献   

16.
There is no standardization of ideal trap installation height for an accurate sampling of flower and leaf chafer scarab beetles in the rainforest canopy. This limits the comparison among different studies on the ecology as well as systematic collecting of this beetle group. Here, we sampled flower and leaf chafer beetles using fruit‐baited traps installed at different heights (1.5, 4.5, 7.5 and 10.5 m) in the Brazilian Amazon rainforest with the following proposals: (i) we tested whether there are effects of trap installation height on the abundance, species richness and biomass of these beetles; and (ii) we tested whether there is a difference in the species composition between each trap height. From January to April 2017, we sampled flower and leaf chafer beetles by using traps baited with a banana and sugarcane juice mixture in Amazon rainforest fragments in Porto Velho, Rondônia, Brazil. The abundance, species richness and biomass of flower chafer beetles (Cetoniinae) were higher in traps installed at 10.5 m. For leaf chafer beetles (Rutelinae), we found the higher species richness and abundance at 4.5, 7.5 and 10.5 m, but the biomass of these insects did not differ among the different heights. Only the community composition of flower chafer beetles differed among the different trap installation heights. Our results showed that flower chafer beetles demonstrate a preference for foraging for resources at greater heights in the Amazon rainforest. Thus, to collect cetoniines from tropical forests, the recommended manner is to install the traps in the forest canopy.  相似文献   

17.
In Amazonia, the assemblages of several taxa differ significantly between upland terra firme and white‐water flooded várzea forests, but little is known about the diversity and distribution of bats in these two forest types. We compare the spatio‐temporal patterns of bat assemblage composition and structure in adjacent terra firme and várzea forests in the lower Purus River region of central Brazilian Amazonia. Bats were sampled using mist nets at five sites in each forest type during 40 nights (2400 net‐hours). We captured 1069 bats representing 42 species and Phyllostomidae bats comprised 99.3 percent of all captures. The bat assemblages in várzea and terra firme forests were significantly different, mainly due to a marked dissimilarity in species composition and in the number of captures during high‐water season. In addition, bat assemblages within forest types differed significantly between seasons for both terra firme and várzea. Frugivores dominated the bat assemblages in both forest types. Overall guild structure did not change between várzea and terra firme or between seasons, but frugivore and animalivore abundance increased significantly in várzea forest during the inundation. The difference in assemblage structure observed in the high‐water season is probably caused by the annual várzea flooding, which provides an effective barrier to the persistence of many understory bats. We also hypothesize that some bat species may undertake seasonal movements between forest types in response to fruit abundance, and our results further underline the importance of floodplain habitats for the conservation of species in the Amazon.  相似文献   

18.
The matrix-tolerance hypothesis suggests that the most abundant species in the inter-habitat matrix would be less vulnerable to their habitat fragmentation. This model was tested with leaf-litter frogs in the Atlantic Forest where the fragmentation process is older and more severe than in the Amazon, where the model was first developed. Frog abundance data from the agricultural matrix, forest fragments and continuous forest localities were used. We found an expected negative correlation between the abundance of frogs in the matrix and their vulnerability to fragmentation, however, results varied with fragment size and species traits. Smaller fragments exhibited stronger matrix-vulnerability correlation than intermediate fragments, while no significant relation was observed for large fragments. Moreover, some species that avoid the matrix were not sensitive to a decrease in the patch size, and the opposite was also true, indicating significant differences with that expected from the model. Most of the species that use the matrix were forest species with aquatic larvae development, but those species do not necessarily respond to fragmentation or fragment size, and thus affect more intensively the strengthen of the expected relationship. Therefore, the main relationship expected by the matrix-tolerance hypothesis was observed in the Atlantic Forest; however we noted that the prediction of this hypothesis can be substantially affected by the size of the fragments, and by species traits. We propose that matrix-tolerance model should be broadened to become a more effective model, including other patch characteristics, particularly fragment size, and individual species traits (e.g., reproductive mode and habitat preference).  相似文献   

19.
We investigate how variation in patch area and forest cover quantified for three different spatial scales (buffer size of 500, 1500 and 3000 m radius) affects species richness and functional diversity of bat assemblages in two ecosystems differing in fragment–matrix contrast: a landbridge island system in Panama and a countryside ecosystem in the Brazilian Amazon. Bats were sampled on 11 islands and the adjacent mainland in Panama, and in eight forest fragments and nearby continuous forest in Brazil. Species–area relationships (SAR) were assessed based on Chao1 species richness estimates, and functional diversity–area relationships (FAR) were quantified using Chao1 functional diversity estimates measured as the total branch length of a trait dendrogram. FARs were calculated using three trait sets: considering five species functional traits (FARALL), and trait subsets reflecting ‘diet breadth’ (FARDIET) and ‘dispersal ability’ (FARDISPERSAL). We found that in both study systems, FARALL was less sensitive to habitat loss than SAR, in the sense that an equal reduction in habitat loss led to a disproportionately smaller loss of functional diversity compared to species richness. However, the inhospitable and static aquatic matrix in the island ecosystem resulted in more pronounced species loss with increasing loss of habitat compared to the countryside ecosystem. Moreover, while we found a significant FARDISPERSAL for the island ecosystem in relation to forest cover within 500 m landscape buffers, FARDIET and FARDISPERSAL were not significant for the countryside ecosystem. Our findings highlight that species richness and functional diversity in island and countryside ecosystems scale fundamentally differently with habitat loss, and suggest that key bat ecological functions, such as pollination, seed dispersal and arthropod suppression, may be maintained in fragments despite a reduction in species richness. Our study reinforces the importance of increasing habitat availability for decreasing the chances of losing species richness in smaller fragments.  相似文献   

20.
Aim Working within a system of high structural contrast between fragments and the surrounding matrix, we assessed patterns of species loss and changes in species composition of phyllostomid bats on artificial land‐bridge islands relative to mainland assemblages, and evaluated the responses of bats to forest edges. We further examined the relative influence of local‐scale characteristics (e.g. vegetation structure, island area) versus landscape attributes (e.g. forest cover, patch density) and the importance of spatial scale in determining phyllostomid species richness and composition on islands. Location Islands in Gatún Lake and adjacent mainland peninsulas in the Barro Colorado Nature Monument, Panama. Methods Bats were sampled over a 2‐year period on 11 islands as well as at forest‐edge and interior sites on adjacent mainland, resulting in > 8400 captures. Results The islands harboured a less diverse and structurally simplified phyllostomid bat fauna. Islands far from the mainland were especially species‐poor. This decline in species richness was associated with compositional shifts towards assemblages strongly dominated by frugivores with good dispersal abilities. Members of other ensembles, most importantly gleaning animalivores, were much less common or absent. Although overall species composition was not significantly altered, species richness at continuous forest‐edge sites was significantly lower compared with that at interior sites. Distance from the mainland and amount of forest cover in the landscape were the best predictors of species richness and assemblage composition. Responses were scale‐dependent. At the local scale, species richness was independent of island area but was correlated positively with distance from the mainland. In contrast, area effects became more important at larger spatial scales, suggesting that many species use multiple fragments. Main conclusions Our results underline the conservation value of small habitat remnants, which, even when embedded in a hostile matrix, can support a relatively diverse bat fauna, provided that there is a low degree of patch isolation and spatial proximity to larger tracts of continuous forest. Although the results at the assemblage level were inconclusive, we demonstrate that certain bat species and ensembles, particularly gleaning animalivores, exhibit high edge‐sensitivity. Our results point to habitat loss rather than changes in landscape configuration as the main process after isolation underlying phyllostomid bat responses, suggesting that conservation efforts should focus on habitat preservation instead of trying to minimize fragmentation per se at the expense of habitat amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号