首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(—)-Epicatechin-3-gallate (ECG) and (— )-epigallocatechin-3-gallate (EGCG), major tea catechins, formed precipitates with soybean lipoxygenase (LOX) in the pH range of 4~7, although with accompanying 10 ~30% loss of the LOX activity. Yeast alcohol dehydrogenase also was precipitated by EGCG. Polyvinylpyrrolidone, Tween 20 and Triton X-100 dissociated the LOX activity from the EGCG-precipitated LOX. However, the MW of the dissociated LOX (114,000) differed from that of the native LOX (100,000). Enzyme activities of the EGCG-precipitated LOX and the dissociated LOX from the precipitate were less stable than the activity of the native LOX. These findings suggest the altered natures of proteins in the presence of tea catechins, ECG and EGCG.  相似文献   

2.
The formation of D-pantothenic acid-α-glucoside (PaA-α-G) was found from D-pantothenic acid (PaA) and maltose in incubation mixtures of microorganisms, especially Saccharomyces yeasts and Sporobolomyces coralliformis IFO 1032. The reaction conditions were investigated for formation of PaA-α-G by resting cells of Spor. coralliformis. The formation of the compound increased with PaA concentration (3~20 mg/ml). The yield was maximum at 5~10 mg/ml of PaA. Cetyl trimethyl ammonium bromide (0.1 %) promoted the formation of PaA-α-G. Sucrose was the optimal α-glucosyl donor. When 30 mg/ml of sucrose was fed to the reaction mixture (initial sucrose, 100 mg/ml; and PaA, 10 mg/ml) at 12-hr intervals, 5.74 mg/ml (3.30 mg/ml as PaA) of PaA-α-G was formed in 48-hr incubation at 28°C with shaking. PaA-α-G was also formed by yeast α-glucosidase, mold maltase and the cell-free extract of Spor. coralliformis. The compound showed approximately 9~10% and 0.1~0.3% (molar ratio) of activity of PaA for Saccharomyces carlsbergensis ATCC 9080 and Lactobacillus plantarum ATCC 8014, respectively. The compound had the same microbiological activity as authentic 4′-O-(α-D-glucopyranosyl)-D-pantothenic acid.  相似文献   

3.
Summary The disaccharides formed by enzymatic transfer of the -D-galactopyranosyl residue fromo-nitrophenyl -d-galactopyranoside to -d-xylopyranosides have been identified. The influence of different factors on the yields of the disaccharides obtained was evaluated. Significant changes in selectivity were observed when -galactosidase fromE. coli was used instead of -galactosidase fromA. oryzae.  相似文献   

4.
In this study, the pathway of β-citraurin biosynthesis, carotenoid contents and the expression of genes related to carotenoid metabolism were investigated in two varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. The results suggested that CitCCD4 (for Carotenoid Cleavage Dioxygenase4) was a key gene contributing to the biosynthesis of β-citraurin. In the flavedo of Yamashitabeni-wase, the expression of CitCCD4 increased rapidly from September, which was consistent with the accumulation of β-citraurin. In the flavedo of Miyagawa-wase, the expression of CitCCD4 remained at an extremely low level during the ripening process, which was consistent with the absence of β-citraurin. Functional analysis showed that the CitCCD4 enzyme exhibited substrate specificity. It cleaved β-cryptoxanthin and zeaxanthin at the 7,8 or 7′,8′ position. But other carotenoids tested in this study (lycopene, α-carotene, β-carotene, all-trans-violaxanthin, and 9-cis-violaxanthin) were not cleaved by the CitCCD4 enzyme. The cleavage of β-cryptoxanthin and zeaxanthin by CitCCD4 led to the formation of β-citraurin. Additionally, with ethylene and red light-emitting diode light treatments, the gene expression of CitCCD4 was up-regulated in the flavedo of Yamashitabeni-wase. These increases in the expression of CitCCD4 were consistent with the accumulation of β-citraurin in the two treatments. These results might provide new strategies to improve the carotenoid contents and compositions of citrus fruits.Carotenoids, a diverse group of pigments widely distributed in nature, fulfill a variety of important functions in plants and play a critical role in human nutrition and health (Schwartz et al., 1997; Cunningham and Gantt, 1998; Havaux, 1998; Krinsky et al., 2003; Ledford and Niyogi, 2005). The pathway of carotenoid biosynthesis has been well documented in various plant species, including Arabidopsis (Arabidopsis thaliana; Park et al., 2002), tomato (Lycopersicon esculentum; Isaacson et al., 2002), pepper (Capsicum annuum; Bouvier et al., 1998), citrus (Citrus spp.; Kato et al., 2004, 2006; Rodrigo et al., 2004; Rodrigo and Zacarías, 2007; Kato, 2012; Zhang et al., 2012a), and apricot (Prunus armenaica; Kita et al., 2007). Genes encoding the enzymes in the carotenoid biosynthetic pathway have been cloned, and their expression profiles have also been characterized (Fig. 1). As carotenoids contain a series of conjugated double bonds in the central chain, they can be oxidatively cleaved in a site-specific manner (Mein et al., 2011). The oxidative cleavage of carotenoids not only regulates their accumulation but also produces a range of apocarotenoids (Walter et al., 2010). In higher plants, many different apocarotenoids derive from the cleavage of carotenoids and have important metabolic functions, such as plant hormones, pigments, aroma and scent compounds, as well as signaling compounds (Fig. 1). A well-known example is abscisic acid, which is a C15 compound derived from the cleavage of the 11,12 double bond of 9-cis-violaxanthin and 9′-cis-neoxanthin (Schwartz et al., 1997; Tan et al., 1997; Cutler and Krochko, 1999; Chernys and Zeevaart, 2000; Giuliano et al., 2003).Open in a separate windowFigure 1.Carotenoid and apocarotenoid metabolic pathway in plants. GGPP, Geranylgeranyl diphosphate. Enzymes, listed here from top to bottom, are named according to the designation of their genes: PSY, phytoene synthase; PDS, Phytoene desaturase; ZDS, ζ-carotene desaturase; ZISO, 15-cis-ζ-carotene isomerase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; HYe, ε-ring hydroxylase; HYb, β-ring hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin deepoxidase; NCED, 9-cis-epoxycarotenoid dioxygenase.Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the oxidative cleavage of carotenoids (Ryle and Hausinger, 2002). CCDs are nonheme iron enzymes present in plants, bacteria, and animals. In plants, CCDs belong to an ancient and highly heterogenous family (CCD1, CCD4, CCD7, CCD8, and 9-cis-epoxycarotenoid dioxygenases [NCEDs]). The similarity among the different members is very low apart from four strictly conserved His residues and a few Glu residues (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, the CCD family contains nine members (CCD1, NCED2, NCED3, CCD4, NCED5, NCED6, CCD7, CCD8, and NCED9), and orthologs in other plant species are typically named according to their homology with an Arabidopsis CCD (Huang et al., 2009). In our previous study, the functions of CitCCD1, CitNCED2, and CitNCED3 were investigated in citrus fruits (Kato et al., 2006). The recombinant CitCCD1 protein cleaved β-cryptoxanthin, zeaxanthin, and all-trans-violaxanthin at the 9,10 and 9′,10′ positions and 9-cis-violaxanthin at the 9′,10′ position. The recombinant CitNCED2 and CitNCED3 proteins cleaved 9-cis-violaxanthin at the 11,12 position to form xanthoxin, a precursor of abscisic acid (Kato et al., 2006). To date, information on the functions of other CCDs in citrus fruits remains limited, while the functions of CCD7 and CCD8, as well as NCED5, NCED6, and NCED9, in Arabidopsis have been characterized (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, CCD7 cleaves all-trans-β-carotene at the 9′,10′ position to form all-trans-β-apo-10′-carotenal. All-trans-β-apo-10′-carotenal is further shortened by AtCCD8 at the 13,14 position to produce β-apo-13-carotenone (Alder et al., 2012). NCED5, NCED6, and NCED9 cleave 9-cis-violaxanthin at the 11,12 position to form xanthoxin (Tan et al., 2003). Compared with other CCDs, the function of CCD4 is poorly understood. In Chrysanthemum morifolium, CmCCD4a contributed to the white color formation by cleaving carotenoids into colorless compounds (Ohmiya et al., 2006). Recently, it has been reported that CsCCD4, CmCCD4a, and MdCCD4 could cleave β-carotene to yield β-ionone (Rubio et al., 2008; Huang et al., 2009).β-Citraurin, a C30 apocarotenoid, is a color-imparting pigment responsible for the reddish color of citrus fruits (Farin et al., 1983). In 1936, it was first discovered in Sicilian oranges (Cual, 1965). In citrus fruits, the accumulation of β-citraurin is not a common event; it is only observed in the flavedos of some varieties during fruit ripening. The citrus varieties accumulating β-citraurin are considered more attractive because of their red-orange color (Ríos et al., 2010). Although more than 70 years have passed since β-citraurin was first identified, the pathway of its biosynthesis is still unknown. As its structure is similar to that of β-cryptoxanthin and zeaxanthin, β-citraurin was presumed to be a degradation product of β-cryptoxanthin or zeaxanthin (Oberholster et al., 2001; Rodrigo et al., 2004; Ríos et al., 2010; Fig. 1). To date, however, the specific cleavage reaction producing β-citraurin has not been elucidated. In this study, we found that the CitCCD4 gene was involved in the synthesis of β-citraurin, using two citrus varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. To confirm the role of the CitCCD4 gene further, functional analyses of the CitCCD4 enzyme were performed in vivo and in vitro. Additionally, the regulation of β-citraurin content and CitCCD4 gene expression in response to ethylene and red light-emitting diode (LED) light treatments was also examined. This study, to our knowledge, is the first to investigate the biosynthesis of β-citraurin in citrus fruits. The results might provide new strategies to enhance the nutritional and commercial qualities of citrus fruits.  相似文献   

5.
Capsaicin 4-O-β-xylooligosaccharides were synthesized by a biocatalytic xylosylation using Aspergillus sp. β-xylosidase. Capsaicin was converted into three new capsaicin glycosides, i.e. capsaicin 4-O-β-xyloside, capsaicin 4-O-β-xylobioside, and capsaicin 4-O-β-xylotrioside in 15, 12 and 10% yield, respectively. All products were isolated from the reaction mixtures by preparative HPLC. The structures of the products were determined by NMR spectroscopic method.  相似文献   

6.
Applied Microbiology and Biotechnology - β-N-Acetylglucosaminidases (GlcNAcases) hydrolyse N-acetylglucosamine-containing oligosaccharides and proteins. These enzymes produce...  相似文献   

7.
Glycosidases represent excellent green chemistry alternatives as catalysts for the synthesis of glycosides, and in particular their stereoselectivity allows the production of anomerically pure glycosides, in only one reaction step using mild reaction conditions. Here, we report the enzymatic synthesis and structural characterization of 3-aminopropyl-1-O-β-D-galactopyranoside. Optimal reaction conditions for the transgalactosylation reaction were 100?mM lactose, 500?mM 3-amino-1-propanol and 24 h of incubation at 50?°C with 6 U/mL of β-galactosidase from Aspergillus oryzae. The fact that the synthesis of 1-propyl-2-O-β-D-galactopyranoside using 1-amino-2-propanol as acceptor was not achieved, and that N-glycoside formation was not observed, confirms the selectivity of β-galactosidase for the synthesis of O-glycosides, and particularly for primary alcohols. The synthesized galactosides were evaluated for their ability to interact with bovine spleen galectin-1 (Gal-1) by using the hemagglutination inhibition assay; results demonstrated that 3-aminopropyl-1-O-β-D-galactopyranoside may be considered as a functionalized galactose moiety more than an efficient Gal-1 inhibitor. The proposed approach constitutes a promising tool for the generation of glycopolymers and glyconanoparticles with potential applications in the development of biosensors as well as construction blocks in chemical synthesis.  相似文献   

8.
9.
An iridoid β-glucoside, namely plumieride coumarate glucoside, was isolated from the Plumeria obtusa (white frangipani) flower. A β-glucosidase, purified to homogeneity from P. obtusa, could hydrolyze plumieride coumarate glucoside to its corresponding β-O-coumarylplumieride. Plumeria β-glucosidase is a monomeric glycoprotein with a molecular weight of 60.6 kDa and an isoelectric point of 4.90. The purified β-glucosidase had an optimum pH of 5.5 for p-nitrophenol (pNP)-β-D-glucoside and for its natural substrate. The Km values for pNP-β-D-glucoside and Plumeria β-glucoside were 5.04±0.36 mM and 1.02±0.06 mM, respectively. The enzyme had higher hydrolytic activity towards pNP-β-D-fucoside than pNP-β-D-glucoside. No activity was found for other pNP-glycosides. Interestingly, the enzyme showed a high specificity for the glucosyl group attached to the C-7" position of the coumaryl moiety of plumieride coumarate glucoside. The enzyme showed poor hydrolysis of 4-methylumbelliferyl-β-glucoside and esculin, and did not hydrolyze alkyl-β-glucosides, glucobioses, cyanogenic-β-glucosides, steroid β-glucosides, nor other iridoid β-glucosides. In conclusion, the Plumeria β-glucosidase shows high specificity for its natural substrate, plumieride coumarate glucoside.  相似文献   

10.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

11.
This paper describes a low temperature, enzymatic route to induce fibrillar structures in a protein solution. The route comprises two steps. First, β-lactoglobulin was hydrolyzed into peptides at pH 8 and 37 °C with the enzyme AspN endoproteinase, which resulted in the formation of random aggregates. After hydrolysis, the pH was lowered to 2. As a result, long fibrillar aggregates were formed which was observed using transmission electron microscopy and Thioflavin T fluorescence measurements.  相似文献   

12.
Cortisol was metabolized to a variety of products, among them small amounts of cortol by fecal flora of humans and rats.A microorganism. Bifidobacterium adolescentis, isolated from both sources, synthesized a 20-hydroxysteroid dehydrogenase which reduced cortisol to 20β-dihydrocortisol. The metabolite was reduced to cortol by Clostridium paraputrificum. The 20-hydroxysteroid dehydrogenase showed a wide substrate specificity; it was independent of the 4-ene and the configuration at C-3, C-11, C-17 and C-21. Cortol was resistant to any further alteration by human fecal flora, i.e. it is a metabolic end product. As expected. B. adolescenris effectively prevented 21-dehydroxylation of cortisol by Eubacterium lentum.  相似文献   

13.
Lević J  Petrović T 《Mycopathologia》1997,140(3):149-155
The formation of conidia in Phaeocytostroma ambiguum on different media and conditions was investigated in this study. Carnation leaf agar (CLA) and a 12 h photoperiod (24/18 °C) provided excellent conditions for the promotion of rapid formation of both alpha (α) and beta (β) conidia in a number of P. ambiguum isolates. The dimensions of α- and β-conidia amounted to 6.0–19.6 × 3.8–7.5 μm and 6.0–24.9 × 1.1–2.6 μm, respectively. They were produced on short or elongate, simple and branched conidiophores. β-conidia have not been described before in P. ambiguum. Intermediate conidia were rarely found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
-Lactoglobulin was enzymatically acylated with N-lauroyl-l-glutaminyl-glycine and N-lauroyl-l-glutamyl-l-lysine using transglutaminase from Streptomyces mobaraense. The modification of the protein with N-fatty-acyl-dipeptide was confirmed by SDS-PAGE, gel chromatography, HPLC, amino acid analysis, and TOF-MS. The degrees of the protein modification with N-lauroyl-l-glutaminyl-glycine and N-lauroyl-l-glutamyl-l-lysine were estimated to be 2–4 and 1.5 residues per molecule, respectively.  相似文献   

15.
16.
Pyruvate is formed on incubation of l-cysteine with acetone powder preparations of Acacia georginae but in the presence of cyanide, β-cyanoalanine is produced and pyruvate production is highly depressed. The pH optimum for pyruvate production is 8·5. In the presence of fluoride (1·5 mM), the pH profile is unchanged and in the presence of cyanide (1·5 mM), minimal pyruvate production occurs at pH 8·5. Although addition of pyridoxal phosphate had no influence on pyruvate or β-Cyanoalanine production, these processes were prevented by sodium borohydride, an inhibitor of pyridoxal enzymes. Neither l-serine nor O-acetyl-l-serine serve as alternative substrates for pyruvate production. β-Fluoroalanine was not detected on incubating fluoride with an enzyme preparation from A. georginae acetone powders.  相似文献   

17.
Astaxanthin was synthesized from β-carotene by the membrane-bound enzyme fraction prepared from a unicellular green alga Haematococcus pluvialis. Zeaxanthin was identified as one of the possible intermediates. NADPH addition and O2 supply were essential for the conversion. A monooxygenase inhibitor, tetcyclacis blocked the astaxanthin formation. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
We tried to polymerize d-glucose to cellotriose, the smallest substrate for β-1,4-glucan synthesis by the β-transglycosylase of Trichoderma longibrachiatum, without participation of high energy compounds such as nucleotide sugars. A commercial β-glucosidase (sweet almond) showed a typical condensation reaction of d-glucose, producing cellobiose when it was entrapped in a visking tube and incubated in 30% d-glucose solution. The reaction was done with immobilized enzyme covalently bound to Polyacrylamide beads, and entrapped enzyme. Cellobiose (21.0 mg) was obtained from 30 g of d-glucose in a 3-day reaction, where 0.29 unit of the entrapped enzyme preparation was incubated with 100 ml of 30% d-glucose at pH 6.0 and 41°C. Gentiobiose was also produced in the mixture as a minor product. The immobilized β-glucosidase (Sumizyme C) preparation covalently bound to Polyacrylamide beads could catalyze a transglucosylation reaction to produce cellotriose from cellobiose in a good yield without production of gentiobiose. The transfer reaction was optimal at pH 4.8 and 30°C. Cellotriose (11.2 mg) was produced from the reaction mixture containing 68 mg of cellobiose and the enzyme preparation (0.1 unit) after 24-hr of incubation at the optimal conditions. Both immobilized β-glucosidases, sweet almond and Sumizyme C, may be used repeatedly without any loss of the initial activity.  相似文献   

19.
Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals.  相似文献   

20.
Tyrosol β-d-fructofuranoside and hydroxytyrosol β-d-fructofuranoside have been synthesized as new compounds in 27.6 and 19.5% respective yields through transfructosylation of tyrosol and hydroxytyrosol. Yeast β-galactosidase Lactozym 3000?L comprising invertase activity was used as catalyst. Besides the main monofructosides, an equimolar mixture of tyrosol β-d-fructofuranosyl-((2→1)-β-d-fructofuranoside and tyrosol β-d-fructofuranosyl-(2→6)-β-d-fructofuranoside was isolated as additional product fraction in 14.3% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号