首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The biochemistry, organization, and regulation of essential oil metabolism in the epidermal oil glands of peppermint have been defined, and most of the genes encoding enzymes of the eight-step pathway to the principal monoterpene component (−)-menthol have been isolated. Using these tools for pathway engineering, two genes and two expression strategies have been employed to create transgenic peppermint plants with improved oil composition and yield. These experiments, along with related studies on other pathway genes, have led to a systematic, stepwise approach for the creation of a ‘super’ peppermint.  相似文献   

2.
The virucidal effect of peppermint oil, the essential oil of Mentha piperita, against herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of peppermint oil for herpes simplex virus plaque formation was determined at 0.002% and 0.0008% for HSV-1 and HSV-2, respectively. Peppermint oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of the oil, plaque formation was significantly reduced by 82% and 92% for HSV-1 and HSV-2, respectively. Higher concentrations of peppermint oil reduced viral titers of both herpesviruses by more than 90%. A clearly time-dependent activity could be demonstrated, after 3 h of incubation of herpes simplex virus with peppermint oil an antiviral activity of about 99% could be demonstrated. In order to determine the mode of antiviral action of the essential oil, peppermint oil was added at different times to the cells or viruses during infection. Both herpesviruses were significantly inhibited when herpes simplex virus was pretreated with the essential oil prior to adsorption. These results indicate that peppermint oil affected the virus before adsorption, but not after penetration into the host cell. Thus this essential oil is capable to exert a direct virucidal effect on HSV. Peppermint oil is also active against an acyclovir resistant strain of HSV-1 (HSV-1-ACV(res)), plaque formation was significantly reduced by 99%. Considering the lipophilic nature of the oil which enables it to penetrate the skin, peppermint oil might be suitable for topical therapeutic use as virucidal agent in recurrent herpes infection.  相似文献   

3.
 Twenty eight somatic hybrid plants were identified following protoplast fusions between peppermint (Mentha piperita L. cv Black Mitcham), producing high-quality oil, and spearmint (Mentha spicata L. cv Native Spearmint), likewise producing high-quality oil and also possessing resistance to verticillium wilt. Prior to fusion, peppermint protoplasts were subjected to iodoacetic acid to inhibit cell division. Protoplasts of peppermint and spearmint were fused using polyethylene glycol plus DMSO. Fusion products were cultured according to an efficient protoplast-to-plant-cycle protocol developed for peppermint. Using this protocol, iodoacetic acid-treated peppermint protoplasts were not able to divide, whereas untreated spearmint protoplasts had the ability to produce callus but not shoots. Therefore, selection of somatic hybrid calli was based on the presumed capability of hybrid cells to form calli and shoots. Shoots in vitro were initially identified as hybrids using RAPD profiles. Subsequently, observations on morphology, chromosome counts, and Southern-hybridization patterns confirmed their hybrid status. The results of verticillium tests revealed that 18 somatic hybrids were more susceptible than Native Spearmint, while hybrid II-14 had a level of susceptibility intermediate between that of the fusion parents. Oil-analysis of hybrid plants indicated that they all have a GC-profile typical of spearmint oil. Received: 8 February 1997 / Accepted: 9 April 1997  相似文献   

4.
Plant-derived essential oil is an alternative to antibiotics, eliminating the concern of developing antibiotic-resistant bacterial strains. In this study, using the half-divided Petri plate assays, 32 volatile essential oils were screened for their antibacterial activity against Acidovorax citrulli (Acc). Sweet basil and peppermint oils were the most effective against Acc, with subsequent trials showing that peppermint oil to be the most active. Using gas chromatography–mass spectrometry, the major compositions of peppermint oil were analysed. Among the various compositions of peppermint oil, menthol, neomenthol, isopulegone and 1,8-cineole were significantly active against Acc and each component at 0.2% concentration inhibited all bacterial growth. This study demonstrated in vitro and in vivo antibacterial activities of peppermint oil and its active components against Acc. These results suggest the use of peppermint oil as a potential antibacterial agent to treat seed with Acc.  相似文献   

5.
The effects of the, essential oils of peppermint (Mentha piperita L.), spearmint Mentha spicata L.) and Japanese mint (Mentha, arvensis L.), of four major constituents of the esssential oil of peppermint, and of three major constituents of the essential oil of spearmint, on the proliferation of Helicobacter pylori, Salmonella enteritidis, Escherichia coli O157:H7, methicillin-resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococccus aureus (MSSA) were examined. The essential oils and the various constituents inhibited the proliferation of each strain in liquid culture in a dose-dependent manner. In addition, they exhibited bactericidal activity in phosphate-buffered saline. The antibacterial activities varied among the bacterial species tested but were almost the same against antibiotic-resistant and antibiotic-sensitive strains of Helicobacter pylori and S. aureus. Thus, the essential oils and their constituents may be useful as potential antibacterial agents for inhibition of the growth of pathogens.  相似文献   

6.
Seven essential oils namely clove, cedar wood, lemongrass, peppermint, eucalyptus, citronella and neem oils were tested for their inhibitory effect on spore germination, growth of germ tube and mycelial growth of Colletotrichum gloeosporioides isolated from diseased Murraya koenigii. All essential oils inhibited the germination and growth of germ tube at different concentrations. However, significant reduction in colony growth was observed with citrus, lemongrass and peppermint oils at 1000, 1500 and 2000 ppm concentrations, respectively. Citrus oil at 1360 ppm inhibited the maximum growth of the fungus followed by lemongrass oil at 1720 ppm and peppermint at 2260 ppm, respectively. The effect of essential oils on mycelial dry weight also showed antifungal activity on the growth of Colletotrichum gloeosporioides. The study revealed the possible utilisation of these essential oils for foliar spray for the management of leaf spot disease of Murraya koenigii.  相似文献   

7.
Gamma irradiation of Scotch spearmint created a mutant line, 643-10-74, which has an altered essential oil reminiscent of peppermint because the monoterpene metabolites in the oil glands of the mutant are predominantly oxygenated at the C3 position of the p-menthane ring instead of the C6 position normally found in spearmint. The limonene hydroxylase genes responsible for directing the regiochemistry of oxygenation were cloned from Scotch spearmint and mutant 643 and expressed in Escherichia coli. The limonene bydroxylase from the wild-type parent hydroxylated the C6 position while the enzyme from the mutant oxygenated the C3 position. Comparison of the amino acid sequences with other limonene hydroxylases showed that the mutant enzyme was more closely related to the peppermint limonene-3-hydroxylases than to the spearmint limonene-6-hydroxylases. Because of the sequence differences between the Scotch spearmint and mutant 643 limonene hydroxylases, it is most likely that the mutation did not occur within the structural gene for limonene hydroxylase but rather at a regulatory site within the genome that controls the expression of one or the other regiospecific variants.  相似文献   

8.
cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.  相似文献   

9.
10.
The basic fraction contained in the essential oil of the Japanese Flue Cured Tobacco Leaf (before redrying) was investigated and 2,3′-dipyridyl was isolated and identified. While, on the other hand, the basic fraction of the essential oil of the aged Japanese Burley Tobacco Leaf was also investigated and nicotine was found to be the predominant constituent of that fraction. At the same time, a small amount of 2,3′-dipyridyl and myosmine was also isolated and identified.  相似文献   

11.
Two host-specific phytotoxic metabolites, AK-toxin I and II, were isolated from a culture broth of Alternaria alternata Japanese pear pathotype, the fungus causing black spot disease of susceptible Japanese pear cultivars. From chemical, spectral and X-ray crystallographic data, AK-toxin I was characterized as 8-(2′S, 3′S)-2′-acetylamino-3′-methyl-3′-phenyl-propionyloxy]-(8R,9S)-9,10-epoxy-9-methyl-deca-(2E,4Z,6E)-trienoic acid. The structure of AK-toxin II was also assigned to be 3′-demethyl derivative of AK-toxin I by comparing the spectral data with those of AK-toxin I.  相似文献   

12.
Cho J  Kim YH  Kong JY  Yang CH  Park CG 《Life sciences》2002,71(5):591-599
Previous reports have shown that the methanol extract and the essential oil from Acori graminei Rhizoma (AGR) inhibited excitotoxic neuronal cell death in primary cultured rat cortical cells. In the present study, an active principle was isolated from the methanol extract by biological activity-guided fractionations and identified as asarone. We evaluated neuroprotective actions and action mechanisms of the isolated asarone as well as the alpha- and the beta-asarone obtained commercially. The isolated asarone inhibited the excitotoxicity induced by the exposure of cortical cultures for 15 min to 300 microM NMDA in a concentration-dependent manner, with the IC50 of 56.1 microg/ml. The commercially obtained alpha- and beta-asarone exhibited more potent inhibitions of the NMDA-induced excitotoxicity than the isolated asarone. Their respective IC50 values were 18.2 and 26.5 microg/ml. The excitotoxicity induced by glutamate (Glu) was also inhibited, but with much less potency than the toxicity induced by NMDA. The IC50 values for the alpha-, beta-, and the isolated asarone were 89.7, 121.7, and 279.5 microg/ml, respectively. Based on the receptor-ligand binding studies using a use-dependent NMDA receptor-channel blocker [3H]MK-801, asarone inhibited the specific bindings in a concentration-dependent fashion. These results indicate that asarone, the major essential oil component in AGR, exhibits neuroprotective action against the NMDA- or Glu-induced excitotoxicity through the blockade of NMDA receptor function. The alpha-asarone was found to exhibit more potent inhibition of [3H]MK-801 bindings, which is consistent with its more potent neuroprotective action than the beta- or the isolated asarone.  相似文献   

13.
Five kinds of pyridine derivatives (1~5), including a novel compound, 5-phenyl-2-propylpyridine (4), were newly identified in peppermint oil.  相似文献   

14.
The oxygenation pattern of the cyclic monoterpenoids of commercial mint (Mentha) species is determined by regiospecific cytochrome P450-catalyzed hydroxylation of the common olefinic precursor (-)-4S-limonene. In peppermint (Mentha x piperita), C3-allylic hydroxylation leads to (-)-trans-isopiperitenol, whereas in spearmint, C6-allylic hydroxylation leads to (-)-trans-carveol. The microsomal limonene-6-hydroxylase was purified from the oil glands of spearmint, and amino acid sequences from the homogeneous enzyme were used to design PCR primers with which a 500-bp amplicon was prepared. This nondegenerate probe was employed to screen a spearmint oil gland cDNA library from which the corresponding full-length cDNA was isolated and subsequently confirmed as the C6-hydroxylase by functional expression using the baculovirus-Spodoptera system. The probe was also utilized to isolate two closely related full-length cDNA species from a peppermint oil gland cDNA library which were confirmed as the limonene-3-hydroxylase by functional expression as before. Deduced sequence analysis of these regiospecific cytochrome P450 monooxygenases indicates that both enzymes bear a typical amino-terminal membrane anchor, consistent with the microsomal location of the native forms, exhibit calculated molecular weights of 56,149 (spearmint) and about 56,560 (peppermint), and are very similar in primary sequence (70% identity and 85% similarity). The availability of these regiochemically distinct, yet very closely related, recombinant hydroxylases and their corresponding genes provides a unique model system for understanding structure-function relationships in cytochrome P450 substrate binding and catalysis, and a means for transgenic manipulation of monoterpene biosynthetic pathways in plants.  相似文献   

15.
In our search for new fusicoccins of unique diterpene glucosides from Phomopsis amygdali, we found that a fragrant substance was formed in the early stage of fusicoccin fermentation. This fragrant constituent was isolated and identified as (+)-menthol, which is a novel fungal metabolite as the enantiomer of well-known peppermint (-)-menthol. (+)-7-Hydroxymenthol and new (+)-(6S)-hydroxymenthol were also isolated and identified as fungal metabolites. In addition, p-menthanetriol, which has been reported as the first fungal monoterpene from the fungus, was also isolated. The possible biosynthetic relationship of these metabolites is discussed.  相似文献   

16.
薄荷油体外抗蠕形螨效果及杀螨机制   总被引:1,自引:0,他引:1  
赵亚娥  郭娜 《昆虫知识》2007,44(1):74-77,I0001
采用透明胶带粘贴过夜法获取2种人体蠕形螨,随机分组,观察不同浓度的薄荷油的杀虫效果,并在MoticDMB5图像采集软件系统下拍摄虫体在薄荷油作用下的虫体死亡过程。结果表明,薄荷油有很强的体外杀灭2种人体蠕形螨的作用,尤其对皮脂蠕形螨的杀灭作用显著。随着药物浓度的增加及作用时间的延长,蠕形螨死亡率增高。12.5%、3.125%分别是薄荷油体外杀灭毛囊蠕形螨和皮脂蠕形螨的最适杀螨浓度。薄荷油作用于蠕形螨,可见虫体收缩扭动,活动加剧,消化管剧烈收缩,毛囊蠕形螨和皮脂蠕形螨体壁均有渗出物外溢。虫体表现为兴奋—痉挛—失水—松弛—死亡的典型症状。薄荷油对人体蠕形螨的杀灭机制主要通过神经毒性和直接毒杀作用,造成虫体破裂脱水而死亡。薄荷油是一种极具开发潜能的高效的天然杀螨药。  相似文献   

17.
Plant essential oils (basil, geranium, balsam fir, lavender, lemongrass, peppermint, pine and tea tree), mixed with either sunflower oil or ethyl alcohol, were applied at 5% concentrations to the sides of Holstein cattle. Pastured cattle treated with essential oils diluted in sunflower oil had less flies than the untreated control for a 24‐h period. However, the essential oil treatments were not significantly different than the carrier oil alone. Barn‐held heifers treated with essential oils and sunflower oil alone had significantly less flies than the untreated control for up to 8 h after treatment. Basil, geranium, lavender, lemongrass and peppermint repelled more flies than sunflower oil alone for a period ranging from 1.5 to 4 h after treatments applied to heifers. All essential oils repelled > 75% of the flies on the treated area for 6 and 8 h on pastured cows and indoor heifers, respectively. Geranium, lemongrass and peppermint stayed effective for a longer duration. Essential oils mixed with ethyl alcohol demonstrated less repellence than when mixed with the carrier oil. Safer's soap, natural pyrethrins without piperonyl butoxide and ethyl alcohol alone were not efficient at repelling flies. Essential oils could be formulated for use as fly repellents in livestock production.  相似文献   

18.
19.
Anti-fungal activities of two essential oils (peppermint oil and eucalyptus oil) and their main components (menthol and eucalyptol, respectively) against molds (Aspergillus niger, Penicillium chrysogenum, and Penicillium sp.) and a white-rot decay fungus (Trametes versicolor) identified from rubberwood surfaces were investigated. The broth dilution method and the agar diffusion technique were employed to determine the minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) using the concentration of substances between 100 and 800 μl ml?1. Inhibitory effects of essential oils and their main components at the MICs against mold growth, fungal decay, and termite attack on rubberwood were further examined by means of the dip treatment method. It was found that MFC values against molds for all treatments examined were about 50–100 μl ml?1 higher than MIC values. Peppermint oil and menthol exhibited high fungistatic and fungicidal activities, with MICs of 300 μl ml?1 and 350 μl ml?1, respectively, against the test molds and the decay fungus. Eucalyptus oil and eucalyptol were also effective against these microbes but at higher concentrations of 600 μl ml?1 and 500 μl ml?1, respectively. Only peppermint oil at the MIC was capable of providing a complete protection from mold growth on rubberwood for up to 12 weeks at storage conditions of 25 °C and 100% RH. Both peppermint oil and eucalyptus oil at the MICs showed moderate resistance to fungal decay and high resistance to termite attack.  相似文献   

20.
The antifungal activities of cinnamon oil, clove oil, anise oil, and peppermint oil, and their main components (cinnamaldehyde, eugenol, trans-anethole, and menthol, respectively) against molds identified from areca palm leaf sheath (Mucor dimorphosporus, Penicillium sp., Aspergillus niger, and Rhizopus sp.) were investigated. An agar dilution method was employed to determine the minimum inhibitory concentration (MIC) of essential oils and their main components. Zone inhibition tests and the inhibitory effect of the leaf sheath dip-treated with essential oils against those molds were examined. Major components of essential oils on the leaf sheath during storage were quantified by gas chromatography analysis. The MIC values of essential oils on agar and on the leaf sheath were identical. With an MIC of 50 ??g ml−1, cinnamon oil had the strongest inhibitory effect. At their MICs the oils were capable of providing protection against mold growth on the leaf sheath for at least 12 weeks during storage at 25 °C and 100% RH. Scanning electron microscope examination showed that essential oils prevented spore germination. Except for menthol in peppermint oil, the main components of the essential oils, which were fairly stable over the storage period, largely contributed to the antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号