首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluoroacetate-sensitive mutant strains, K–20 and S–22, of Candida lipolytica could not grow or could only slightly grow on agar media containing di- or tricarboxylic acid involved in the TCA-cycle as the sole source of carbon. Relative activities of aconitate hydratase in the cells of the mutant strains, K-20 and S-22, were approximately 1/10 and 1/100, against that of the parent strain, respectively. This facts support the statement that the mutant strains were extremely sensitive to monofiuoroacetate.

The aconitate hydratase activities of these mutant strains and the parent strain corresponded well to the citric to (+)-isocitric acid ratio in the final fermented broths.  相似文献   

2.
Summary A new mutant strain,Aspergillus niger GS-III, showing resistance to manganese ions inhibition of citric acid fermentation on a sugarcane molasses containing medium was induced fromAspergillus niger KCU 520, a high citric acid-yielding strain. In submerged, surface or continuous cultures in the presence of manganese ions concentration upto 1.5 ppm the mutant strain yielded citric acid about 90 KgM–3 . The citric acid yield was comparable to that obtained with the parental strain KCU 520 in the absence of manganese ions, but it was atleast 3-fold higher than that obtained by the latter in the presence of manganese ions. The mutant strain immobilized in calcium alginate beads was used in combination with surface-stabilized cultures for about 36-days in a continuous flow horizontal fermenter without any apparent loss in citric acid productivity. These results indicate that the manganese-resistant mutant is stable and may be used in the presence of sufficient manganese ions concentration (1.5 ppm) in the fermentation medium. This capability of the mutant strainA. niger GS-III has been correlated with greatly reduced levels (about one-thirds) of the NADP+ -isocitric dehydrogenase, one of the control points for citric acid accumulation.  相似文献   

3.
Screening test for obtaining microorganisms which produce l-amino acids or organic acids from n-paraffins were carried out. Fourteen strains of microorganisms which seemed to belong to the yeast showed strong ability to produce α-ketoglutaric acid. A representative strain of these microorganisms was identified as Candida lipolytica AJ 5004.

Optimal conditions for production of α-ketoglutarate using Candida lipolytica AJ 5004 were also studied. Under the condition thus obtained using a culture medium of 8 weight % of n-paraffins, the yeast accumulated 59% of α-ketoglutarate to the substrate added after three days culture.  相似文献   

4.
To establish a novel process for the production of l-glutamic acid from n-paraffins, a glycerol auxotroph GL-21, a new type mutant, was successfully obtained from Corynebacterium alkanolyticum No. 314 by treatment with N-methyl-N′-nitro-N-nitrosoguanidine. This auxotroph required glycerol for its growth regardless of the carbon source used.

At 72 hr, this mutant GL-21 produced about 40 mg/ml of l-glutamic acid from n-paraffins in the culture broth at 0.01 per cent addition of glycerol in the absence of penicillin.

A thiamine auxotroph, a biotin auxotroph and an oleic acid auxotroph were also obtained by a similar technique, but these auxotrophs were found to be inapplicable for the production of l-glutamic acid from n-paraffins.  相似文献   

5.
Fumaric acid productivity of Candida hydrocarbofumarica in various culture conditions was investigated. Namely, the effects of pH, heavy metal ions, hydrocarbon concentration, aeration and surface active agents were studied.

The addition of CaCO3 and the aeration were effective for fumaric acid production.

The rate of conversion of n-paraffin to fumaric acid gradually decreased as the concentration of n-paraffins (6%) was increased.

A very high yield, 84% was obtained with a culture medium containing 6% of n-paraffins for 7 days culture.  相似文献   

6.
Summary Many mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glycerol as a carbon source were induced from Aspergillus niger WU-2223L, a citric acid-producing strain. The mutant strains were classifiable into two types according to their growth characteristics. On the agar plates containing glucose as a sole carbon source, mutant strains of the first type showed good growth irrespective of the presence or absence of DG. When cultivated in shake cultures, some strains of the first type, such as DGR1–2, showed faster glucose consumption and growth than strain WU-2223L. The period for citric acid production shortened from 9 days for strain WU-2223L to 6–7 days for these mutant strains. The levels and yields of citric acid production of the mutant strains were almost the same as those of strain WU-2223L. The mutant strains of the second type, however, showed very slow or no growth on both the agar plates containing glucose and fructose as sole carbon sources. In shake cultures, mutant strains such as DGR2-8 showed decreased glucose consumption rates, resulting in very low production of citric acid.  相似文献   

7.
The biochemical rationale for the inhibition of citric acid fermentation by Aspergillus niger in the presence of Mn2+ ions has been investigated using high citric acid-yielding, Mn2+ ion-sensitive as well as Mn2+ ion-tolerant mutant strains of A. niger. In the presence of Mn2+ (1.5 mg/l), citric acid production by the Mn2+ ion-sensitive strain (KCU 520) was reduced by about 75% with no apparent effect on citric acid yield by the Mn2+ ion-tolerant mutant strain (GS-III) of A. niger. The significantly increased level of the Mn2+ ion-requiring NADP+-isocitrate dehydrogenase activity in KCU 520 cells and the lack of effect on the activity level of the enzyme in GS-III mutant cells by Mn2+ ions during fermentation seem to be responsible for the Mn2+ ion inhibition of citric acid production by the KCU 520 strain and the high citric acid yield by the mutant strain GS-III of A. niger even in the presence of Mn2+.  相似文献   

8.
Summary Growth, citric acid production and enzymatic activity of the mitochondrial respiratory enzymes of a wild-type and a citric-acid-producing mutant of Aspergillus niger have been compared during fermentation under citric-acid-accumulating and non-accumulating conditions. Under non-accumulating conditions, both strains showed standard growth and no citric acid production. The mutant strain was characterized by delayed onset of growth and lowered cell yield. Under citric-acid-accumulating conditions the wild-type strain exhibited decelerated growth and a maximal citric acid concentration of 12 g l–1. Reduced, but continuing growth and citric acid production of 32 g l–1 was observed for the mutant strain. In general, the mutant strain exhibited reduced activity for the proton-pumping respiratory complexes and enhanced activity for the alternative respiratory enzymes. In contrast to the stable activity of complex I in the wild-type strain, this complex was selectively lost in the mutant strain at the onset of citric acid production, while the alternative NADH dehydrogenases were kept at enhanced and constant activity. A possible causal connection between the loss of complex I and citric acid accumulation is discussed. Offsprint requests to: J. Wallrath  相似文献   

9.
Citric acid production from sugar cane molasses byAspergillus niger NIAB 280 was studied in a batch cultivation process. A maximum of 90 g/L total sugar was utilized in citric acid production medium. From the parental strainA. niger, mutant strains showing resistance to 2-deoxyglucose in Vogal's medium containing molasses as a carbon source were induced by γ-irradiation. Among the new series of mutant strains, strain RP7 produced 120 g/L while the parental strain produced 80 g/L citric acid (1.5-fold improvement) from 150 g/L of molasses sugars. The period of citric acid production was shortened from 10 d for the wild-type strain to 6–7 d for the mutant strain. The efficiency of substrate uptake rate with respect to total volume substrate consumption rate,Q s (g per L per h) and specific substrate consumption rate,q s (g substrate per g cells per h) revealed that the mutant grew faster than its parent. This indicated that the selected mutant is insensitive to catabolite repression by higher concentrations of sugars for citric acid production. With respect to the product yield coefficient (Y p/x), volume productivity (Q p) and specific product yields (q p), the mutant strain is significantly (p≤0.05) improved over the parental strain.  相似文献   

10.
Syntheses of the key enzymes of the glyoxylate cycle, in Candida lipolytica, were highly repressed by glucose. Syntheses of the key enzymes of the methylcitric acid cycle were also slightly repressed by glucose but the degrees of repression in the syntheses of these enzymes were nearly equal to those of repression in the syntheses of several enzymes of the citric acid cycle. All enzyme syntheses repressed by glucose were derepressed during incubation with succinate as well as with n-alkanes: enzyme syntheses of the methylcitric acid cycle did not necessitate the addition of propionate or odd-carbon n-alkanes. The enzymes of the methylcitric acid cycle seem to be constitutive, similarly as those of the citric acid cycle.

In the parent strain, the respective enzyme levels of the cells grown on an odd-numbered n-alkane were similar to those of the cells grown on an even-numbered n-alkane. But in the mutant strain lacking 2-methylisocitrate lyase, the cells grown on the odd-numbered alkane contained aconitate hydratase, NADP-Iinked isocitrate dehydrogenase, isocitrate lyase, 2- methylcitrate synthase and 2-methylaconitate hydratase all at higher levels than the cells grown on the even-numbered alkane. Both the parent cells and the mutant cells grown on the same carbon source contained at individually similar levels of the following six enzymes; citrate synthase, NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase, and malate synthase. The pleiotropic changes of enzyme activities in the mutant cells grown on the odd-numbered alkane seem to be ascribable to direct or indirect stimulation caused by threo-ds-2-methylisocitric acid accumulation.  相似文献   

11.
The purpose of the present investigation is to obtain the superior mutants from the tartrate producing strain, Gluconobacter suboxydans 2026Y2 previously isolated from nature. Some mutant strains obtained by treatment with N-methyl-N′-nitro-N-nitrosoguanidine were found to accumulate L(+) tartaric acid in culture broth with much higher yield than in the case of the wild strain.

The high tartrate productivity of the mutants was followed by the low accumulation of 2-ketogluconic acid. The mutants having high assimilability of 5-ketogluconate showed high tartrate productivity.

The culture conditions for tartaric acid production by a mutant, Gl. suboxydans N-3874, were investigated. As a result, the amount of tartaric acid accumulated in culture broth reached to a level of 14.6g/liter in the medium containing 5% glucose and 0.3% corn steep liquor.  相似文献   

12.
The influence of some fermentation parameters on the semi-pilot scale (alteration of growth conditions,e.g., sugar concentration, incubation temperature and initial pH) on citrate production was demonstrated in parent and mutant strains ofAspergillus niger. Raw material from sugar industry (cane molasses) was examined as basal fermentation medium in a stirred stainless-steel 15-L fermentor. After growth on medium with 150 g/L sugar, the parent strain produced 51.2 g/L citric acid; the mutant strain achieved production maximum of 96.2 g/L. Comparing the growth, kinetic (volumetric substrate uptake rate, rate of substrate consumption and volumetric productivity rate) and production parameters it was found that the mutant strain grows more rapidly, with slightly changed morphology (intermediate, shiny round pellets with diameter 0.6–0.7 mm), and exhibits a higher citrate production and higher efficiency of sugar utilization.  相似文献   

13.
Citric acid production from cellobiose by Aspergillus niger was studied by a semi-solid culture method using bagasse as a carrier. From the parental strain Yang no. 2, mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glucose as a carbon source were induced. The representative mutant strain M155 was selected and subjected to further mutation. The new series of mutant strains showing resistance to DG on minimal medium containing cellobiose as a carbon source was induced, and among them the best mutant strain C192 showed higher citric acid productivity than Yang no. 2 in semi-solid culture when glucose was used as a carbon source. Moreover, in semi-solid culture, the strain C192 produced 49.6 g/l of citric acid, 1.6 times as much citric acid as Yang no. 2 produced, from 100 g cellobiose/l and showed enhanced -glucosidase production. In shake culture, the extracellular -glucosidase activity of C192 was higher than that of Yang no. 2 when not only cellobiose but also glucose and glycerol, catabolite repressors, were used as a carbon source. These results indicate that mutant strains such as C192 are insensitive to catabolite repression. Correspondence to: S. Usami  相似文献   

14.
15.
Candida guilliermondii IMK 1 is a mutant strain that accumulates concentrations of citric acid approximately seven times higher than does its parent strain, NRRL Y-448. In contrast to its parent, strain IMK 1 cannot use citrate as the sole carbon source, or assimilate citrate in the presence of glucose. Measurements of membrane ATPase activity show consistently lower values in the mutant strain than in its parent. It is suggested that failure to re-assimilate the excreted citrate is a major contributory factor in the extracellular accumulation of high citrate concentrations, and that this failure is related to a defect in the membrane structure. Correspondence to: N. A. Gutierrez  相似文献   

16.
A mutation was induced in Aspergillus niger wild strain using ethidium bromide resulting in enhanced expression of citric acid by three folds and 112.42 mg/mL citric acid was produced under optimum conditions with 121.84 mg/mL of sugar utilization. Dendograms of 18S rDNA and citrate synthase from different fungi including sample strains were made to assess homology among different fungi and to study the correlation of citrate synthase gene with evolution of fungi. Subsequent comparative sequence analysis revealed strangeness between the citrate synthase and 18S rDNA phylogenetic trees. Furthermore, the citrate synthase movement suggests that the use of traditional marker molecule of 18S rDNA gives misleading information about the evolution of citrate synthase in different fungi as it has shown that citrate synthase gene transferred independently among different fungi having no evolutionary relationships. Random amplified polymorphic DNA (RAPD-PCR) analysis was also employed to study genetic variation between wild and mutant strains of A. niger and only 71.43% similarity was found between both the genomes. Keeping in view the importance of citric acid as a necessary constituent of various food preparations, synthetic biodegradable detergents and pharmaceuticals the enhanced production of citric acid by mutant derivative might provide significant boost in commercial scale viability of this useful product.

Abbreviations

CS - Citrate synthase, CA - Citric acid, RAPD - Random amplified polymorphic DNA, TAF - Total amplified fragments, PAF - Polymorphic amplified fragments, CAF - Common amplified fragments.  相似文献   

17.
Summary Comparison of the parental strain of the Leuconostoc mesenteroides subsp. mesenteroides (19D) and its citrate-negative mutant, which has lost a 22-kb plasmid, has confirmed the energetic role of citrate. Fermentation balance analysis showed that citrate led to a change in heterolactic fermentation from glucose. High levels of enzyme activity in both mutant and parental strains were found for NADH oxidase, lactate dehydrogenase, acetate kinase, alcohol dehydrogenase, diacetyl reductase and acetoin reductase, although NADH oxidase, alcohol dehydrogenase, diacetyl reductase and acetoin reductase were partly repressed by citrate. All these enzymes studied were not plasmid linked. In the parental strain, citrate lyase was induced by citrate. No citrate lyase activity was found in the citrate-negative mutant grown in presence of citrate, but this does not provide evidence that citrate lyase is linked to the 22-kb plasmid. Offprint requests to: C. Diviès  相似文献   

18.
Production of d S-threo-isocitric acid (ICA) by yeast meets serious difficulties since it is accompanied by a simultaneous production of citric acid (CA) in significant amounts that reduces the yield of desired product. In order to develop an effective process of ICA production, 60 yeast strains of different genera (Candida, Pichia, Saccharomyces, Torulopsis, and Yarrowia) were tested for their ability to produce ICA from rapeseed oil; as a result, wild-type strain Yarrowia lipolytica VKM Y-2373 and its mutant Y. lipolytica 704-UV4-A/NG50 were selected as promising ICA producers. The effects of temperature, pH, aeration, and concentrations of rapeseed oil, iron, and itaconic acid on ICA production by selected strains were studied. Under optimal conditions (pH 6.0; aeration 50–55 %; rapeseed oil concentration of 20–60 gl?1, iron ion concentration of 1.2 mg l?1, and itaconic acid amount of 30 mM), selected strains of Y. lipolytica produced predominantly ICA with a low amount of a by-product, CA.  相似文献   

19.
Summary TheA. niger strain 363 is better in its citric acid producing capacity than other strains studied. The pH value of the culture media differs from strain to strain for the good yield of citric acid. When there is good yield of citric acid the sugar consumption is less and mycelial growth is also less.  相似文献   

20.
A novel process for the microbial production of alkaline protease on an industrial scale was successfully established by using a kabicidin resistant mutant, No. 5–128B, derived from Fusarium sp. S–19–5. The most suitable carbon source for producing alkaline protease was n-paraffins (C10~C14) and the effective nitrogen source was dried-yeast cells containing no nucleic acid, the optimum concentrations being 12.5% (w/v) and 7.0% (w/v), respectively. The optimal temperature and initial pH for protease production were 24°C and 6.0, respectively. Under the optimal conditions using a shaker flask mutant No. 5–128B produced 41000 PU/ml of alkaline protease, which corresponded to about 10 times the amount produced by the parent strain. The relation between the high ability to produce alkaline protease and the resistance to kabicidin, a polyene antibiotic, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号