首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutant strains of Aspergillus sojae exhibited coordinate increases of acid proteinase, α-amylase, and cellulase and a decrease of pectin trans-eliminase accompanied with the hyperproduction of alkaline proteinase in wheat bran koji culture. The production of these enzymes in the wheat bran solid medium, liquid wheat bran-defatted soybean medium, and liquid glucose-peptone medium were surveyed. The analyses on the production patterns of these enzymes under the different cultural conditions suggest that mutation in these mutants producing elevated levels of the above enzymes is due to a more complex alteration than a single gene mutation.  相似文献   

2.
Mutation experiments were performed to decrease the protease productivity of Aspergillus awamori var. kawachi using ultraviolet light and N-methyl-N'-nitro-N-nitrosoguanidine. The selected mutant HF-15 showed reductions in protease productivity of 93%, 84% and 50% in solid wheat bran culture, shaking Medium B and wheat bran cultures, respectively, as compared with the parent. Protease-less mutant HF-15 failed to produce α-mannosidase, and N-acetyl-β-d-glucosaminidase productivity decreased by 35%. Mutant HF-15 specifically produced a high amount of raw starch-adsorbable and raw starch-digestive glucoamylase similar to GA I under all tested cultural conditions. On the contrary, high protease-producing mutant HF-10 produced a glucoamylase with very limited adsorption and digestion capacity on raw corn starch, and lower hydrolysis toward gelatinized potato starch and glycogen that was similar to GA I'.  相似文献   

3.
Isolation and Analysis of Molds from Soy Sauce Koji in Thailand   总被引:5,自引:3,他引:2       下载免费PDF全文
Five different isolates of Aspergillus and one of Mucor were compared with a Japanese commercial strain of Aspergillus oryzae for proteolytic activity on wheat bran substrate. One isolate of Aspergillus with superior protease production, identified as Aspergillus flavus var. columnaris, showed no detectable aflatoxin production on glutinous rice or soybean substrate. Preliminary tests using this fungus as a koji mold in a traditionally operated factory resulted in a soy sauce superior in quality to that usually produced.  相似文献   

4.
Cellulose is a kind of renewable resource that is abundant in nature. It can be degraded by microorganisms such as mildew. A mildew strain with high cellulase activity was isolated from mildewy maize cob and classified as Aspergillus glaucus XC9 by morphological and 18S rRNA gene sequence analyses. We studied the effects of nitrogen source, initial pH, temperature, incubation time, medium composition, and surfactants on cellulase production. Maximal activities of carboxymethylcellulase (6,812 U/g dry koji) and filter paperase (172 U/g dry koji) were obtained in conditions as follows: initial pH, 5.5–6.0; temperature, 30°C; cultivation period, 3–4 days; inoculum ratio, 6% (vol/vol); sugarcane bagasse/wheat bran ratio, 4:6. When bagasse was used as substrate and mixed with wet koji at a 1:1 (wt/wt) ratio, the yield of reducing sugars was 36.4%. The corresponding conversion rate of cellulose to reducing sugars went as high as 81.9%. The results suggest that A. glaucus XC9 is a preferred candidate for cellulase production. Translated from the Journal of Xiamen University (Natural Science), 2005, 44(1) (in Chinese)  相似文献   

5.
6.
Two different extracellular proteases, protease I (P-I), an alkaline protease, and protease II (P-II) a neutral protease, from Aspergillus flavus var. columnaris were partially purified by using (NH(4))(2)SO(4) precipitation, diethylaminoethyl-Sephadex A-50 chromatography, carboxymethylcellulose CM-52 chromatography, and Sephadex G-100 gel filtration. The degree of purity was followed using polyacrylamide gel electrophoresis. The activity of P-I was completely inhibited by 0.1 mM phenylmethylsulfonyl fluoride, and that of P-II was completely inhibited by 1 mM ethylenediaminetetraacetate. By using these inhibitors with extracts of wheat bran koji, the proportions of total activity that could be assigned to P-I and P-II were 80 and 20%, respectively. This compared favorably with activities estimated by using polyacrylamide gel electrophoresis slices (82 and 18%, respectively). Extracts from factory-run soybean koji gave comparable results. Both enzymes demonstrated maximum activity at 50 to 55 degrees C and only small changes in activity between pH 6 and 11. For P-I, activity was somewhat higher from pH 8.0 to 11.0, whereas for P-II it was somewhat higher from pH 6 to 9. In the presence of 18% NaCl, the activities of both P-I and P-II dropped by approximately 90 and 85%, respectively. P-I was inferred to possess aminopeptidase activity since it could hydrolyze l-leucyl-p-nitroanilide hydrochloride. P-II was devoid of such activity. The ramifications of the results for factory-produced soy sauce koji are discussed.  相似文献   

7.
The ability of 88 fungi, which had been obtained as high-potency strains for acid proteinase production, to produce a new type of acid carboxypeptidase (having on optimal pH of about 3 for hydrolysis of benzyloxycarbonyl-glutamyltyrosine) in surface koji culture was determined. Among the aspergilli, substantial amounts of this new acid carboxypeptidase were produced by Aspergillus saitoi, A. usamii, A. awamori, A. inuii, and A. niger. Maximum yields of acid carboxypeptidase per gram of substrate were obtained by submerged culture in a medium containing 0.9% defatted soybean and 0.6% wheat bran. However, the maximum enzyme concentration per milliliter was obtained with a medium containing 3% defatted soybean and 2% wheat bran. The terminal pH could be controlled by varying the concentrations of soybean oil meal and wheat bran. The maximum enzyme production was reached after 4 days or more at 30 C.  相似文献   

8.
Cellulose is a kind of renewable resource that is abundant in nature.It can be degraded by microorganisms such as mildew.A mildew strain with high cellulase activity was isolated from mildewy maize cob and classified as Aspergillus glaucus XC9 by morphological and 18S rRNA gene sequence analyses.We studied the effects of nitrogen source,initial pH,temperature,incubation time,medium composition,and surfactants on cellulase production.Maximal activities of carboxymethylcellulase (6,812 U/g dry koji) and filter paperase (172 U/g dry koji) were obtained in conditions as follows:initial pH,5.5-6.0;temperature,30℃;cultivation period,3-4 days;inoculum ratio,6% (vol/vol);sugarcane bagasse/wheat bran ratio,4:6.When bagasse was used as substrate and mixed with wet koji at a 1:1 (wt/wt) ratio,the yield of reducing sugars was 36.4%.The corresponding conversion rate of cellulose to reducing sugars went as high as 81.9%.The results suggest that A.glaucus XC9 is a preferred candidate for cellulase production.  相似文献   

9.

Background

Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far.

Results

We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli.

Conclusions

Genomes of Aspergillus species contain a similar proportion of protease encoding genes. According to comparative genomics, proteomics and enzymatic experiments serine proteases make up the largest group in the protease spectrum across the species. In general wheat bran gives higher induction of proteases than sugar beet pulp. Interesting differences of protease activity, extracellular enzyme spectrum composition, protein occurrence and abundance were identified for species. By combining in silico and wet-lab experiments, we present the intriguing variety of protease productivity in Aspergilli.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-523) contains supplementary material, which is available to authorized users.  相似文献   

10.
A fungus, Paecilomyces varioti Bainier TPR-220 was found to produce an acid-protease on wheat bran culture (Koji). The protease showed the highest activity at pHs between 2.5 and 3.0 on casein as substrate. The enzyme was stable at pHs from 2.5 to 6.0 at 40°C for forty minutes. By crystallization from 50% acetone solution the specific activity of the protease was increased five times as high as that of the original crude enzyme preparation.  相似文献   

11.
Summary A relationship between temperature and high ethanol yields has been found using whole corn mashes saccharified with Aspergillus oryzae wheat bran koji. Decreased ethanol yields were obtained at 34.5°C with high concentration corn mashes in contrast to high ethanol yields with the same medium at lower temperatures. The decreased yields appear to be related to mass and/or heat transfer problems rather than primary ethanol toxicity. Scale-up of the high corn medium will require a re-evaluation of alcohol fermentation technology.  相似文献   

12.
In a locally isolated Rhizopus oryzae strain highest-production of protease (388.54/g wheat bran) was observed in presence of Tween-80 and dioctyl sodium sulfosuccinate individually at 40mg/g wheat bran concentration. Under solid state fermentation biotin (0.0025mg/g wheat bran); Ca2+ (0.05mg/g wheat bran) and 1-Naphthyl acetic acid (0.01mg/g wheat bran) also showed some inducing effect on the synthesis of the enzyme protease by solid state fermentation.  相似文献   

13.
Solid state fermentation was conducted for the production of L-glutaminase by Trichoderma koningii Oud.aggr. using different agro-industrial byproducts inlcuding wheat bran, groundnut residues, rice hulls, soya bean meal, corn steep, sesamum oil cake, cotton seed residues and lentil industrial residues as solid substrates. Wheat bran was the best substrate for induction of L-glutaminase (12.1 U/mg protein) by T. koningii. The maximum productivity (23.2 U/mg protein) and yield (45.0 U/gds) of L-glutaminase by T. koningii occurred using wheat bran of 70% initial moisture content, initial pH 7.0, supplemented with D-glucose (1.0%) and L-glutamine (2.0% w/v), inoculated with 3 ml of 6 day old fungal culture and incubated at 30°C for 7 days. After optimization, the productivity of L-glutaminase by the solid cultures of T. koningii was increased by 2.2 fold regarding to the submerged culture.  相似文献   

14.
Nuclease P1 from Penicillium citrinum was found to be produced in a form of complex with malonogalactan (a galactan, 1, 5-β-galactofuranoside polymer esterfied with malonic acid at position 3) in the culture on wheat bran. Neither nuclease P1-malonogalactan complex nor malonogalactan was produced in a liquid medium. Nuclease P1-malonogalactan complexes, P1-MG I, II, and III were purified from an aqueous extract of the culture on wheat bran. The most anionic complex, P1-MG III, was composed of the protein, carbohydrate and malonic acid in the ratio of 1: 2.6: 0.5 (w/w). The complex was not dissociated by purification procedures including fractionations with acetone and ammonium sulfate, gel filtration and DEAE-cellulose chromatography. A malonogalactan-specific carboxylesterase was found in culture of the same mold on wheat bran. Nuclease P1-malonogalactan was demalonylated by the esterase to yield nuclease P1-galactan. The binding of nuclease P1 to galactan was rather loose so that nuclease P1-galactan complex was partially dissociated by DEAE-cellulose chromatography. Attempt to reconstitute the complex from nuclease P1 and malonogalactan upon mixing was unsuccessful. Exogenously supplemented nuclease P1 did not associate with malonogalactan in the growing culture on wheat bran, either.

Several extracellular enzymes such as RNase, β-galactosidase and protease were also found in a form of complex with malonogalactan in the culture on wheat bran.  相似文献   

15.
A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.  相似文献   

16.
Summary Aspergillus niger produced extracellular cellobiase when grown on different lignocellulosic substrates in solid state fermentation. The enzyme activity and yield were variable according to the carbon source. In Vogel’s medium, the cellobiase productivity was significantly higher on wheat bran, followed by Leptochloa fusca (kallar grass) straw augmented with corn steep liquor. Maximum yield of cellobiase/g wheat bran was significantly higher than the values reported on other potent fungi, bacteria and recombinants, harboring heterologous gene for cellobiase. This enzyme in the presence and absence of Trichoderma reesei and celluloclast, saccharified the biomass and the percentage saccharification as well as glucose yield from lignocellulosic biomass was doubled in its presence. The partially purified enzyme was thermotolerant as evidenced by melting temperature, activation energy demand for active catalysis, enthalpy and entropy of activation for reversible or irreversible thermal inactivation.  相似文献   

17.
A convenient method was proposed for the estimation of glucosamine content in koji. In this method, the time of acid hydrolysis of the mold sample was markedly shortened modifying the previously reported method as follows; the mold sample was immersed in 60% of sulfuric acid for 24 hr at 25°C, and then the mixture was diluted with water to make the concentration of sulforis acid 1 n and autoclaved under the pressure at 1 kg/cm2 for 1 hr. The liberated glucosamine was assayed by Blix’s method. The glucosamine contents of mycelia obtained from the submerged and surface cultures were increased about 2 times of initial stages in prolonged incubation. The significant differences of the glucosamine contents in various kojis were seen depending on the raw materials used; the values were 18~26mg/g in wheat bran koji and 6~16 mg/g in rice and defatted soybean meal koji.  相似文献   

18.
Wheat bran, a by-product of the wheat milling industry, consists mainly of hemicellulose, starch and protein. In this study, the hydrolysate of wheat bran pretreated with dilute sulfuric acid was used as a substrate to produce ABE (acetone, butanol and ethanol) using Clostridium beijerinckii ATCC 55025. The wheat bran hydrolysate contained 53.1 g/l total reducing sugars, including 21.3 g/l of glucose, 17.4 g/l of xylose and 10.6 g/l of arabinose. C. beijerinckii ATCC 55025 can utilize hexose and pentose simultaneously in the hydrolysate to produce ABE. After 72 h of fermentation, the total ABE in the system was 11.8 g/l, of which acetone, butanol and ethanol were 2.2, 8.8 and 0.8 g/l, respectively. The fermentation resulted in an ABE yield of 0.32 and productivity of 0.16 g l−1 h−1. This study suggests that wheat bran can be a potential renewable resource for ABE fermentation.  相似文献   

19.
Production of alkaline protease employing the laboratory isolate, Bacillus sp. under solid state fermentation (SSF) was optimized. The effect of wheat bran and lentil husk was examined. Wheat bran showed highest enzyme production. The appropriate incubation time, inoculum size, moisture level and buffer solution level were determined. Maximum yields of 429.041 and 168.640 U g−1 were achieved by employing wheat bran and lentil husk as substrates in 0.1 M carbonate/bicarbonate buffer at pH 10 with 30 and 40% initial moisture level at 24 h. Inoculum size and buffer solution level were found to be 20 and 25% and 0.5:1 for wheat bran and lentil husk, respectively.  相似文献   

20.
The aim of the present study was to evaluate the influence of native, fermented and extruded wheat bran on the performance and intestinal morphology of piglets. Additionally, short-chain fatty acids (SCFA), biogenic amines, ammonia, lactic acid, pH as well as E. coli and lactic acid bacterial counts were analysed in digesta samples from three gut sections. Furthermore, the antioxidant potential in blood samples was evaluated based on the lipid radicals formed. For this purpose, 48 newly weaned piglets (28 d old) were allocated to one of the four different dietary treatment groups: no wheat bran (Control), native wheat bran, fermented wheat bran as well as extruded wheat bran. Wheat bran variants were included at 150 g/kg into the diets. All diets were mixed to reach the calculated isonitrogenic nutrient contents. Gut tissue and digesta samples were collected from the proximal jejunum, the terminal ileum and the colon ascendens, blood samples directly at slaughter. Although none of the dietary interventions had an impact on performance parameters, the amount of goblet cells in the ileum was increased upon feeding native and extruded wheat bran, compared to fermented bran (p < 0.05). The E. coli counts in colonic chyme were significantly lower (p < 0.05) in the Control group compared to the groups fed with wheat bran. The concentration of SCFA showed differences for minor compounds (p < 0.05), while linear contrast analyses revealed a reduced concentration of total SCFA in the colon following the feeding of modified wheat bran compared to native wheat bran. This may suggest that several compounds are more easily digested already in the ileum, resulting in a reduced nutrient flow into the large intestine and therefore less unexploited digesta is available as substrate for the microorganisms there. Fermentation also resulted in a significant decrease of methylamine in the colon (p < 0.05), while other biogenic amines in the ileum and colon showed no statistically significant differences. The formation of lipid radicals was decreased (p < 0.05) after feeding native wheat bran compared to the Control group. These results suggest that fermentation and extrusion of wheat bran exert some different impact regarding their physiological mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号