首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical structure of a yellow C18-compound (IV), isolated from the decomposition products of sodium pentachlorophenoxide (Na-PCP) in an aqueous solution by sunlight, has been determined by chemical and spectroscopic evidences. Some of the chemistry and the absorption spectra of IV and its related compounds containing 3-cyclohexene-1,2-dione and spiroketal structures are also described.  相似文献   

2.
The reaction of rotenone, which has the 5′β-isopropenyl grouping, with boron tribromide in dichloromethane gives the 1′,5′-seco-5′-bromo compound having the opened E-ring. When treated with sodium bicarbonate in aqueous acetone, the compound closes the E-ring to form two products having the 5′-isopropenyl grouping in the α- and β-configurations. By this cycle, rotenone (5′β-rotenone) gives 5′α-epirotenone as well as rotenone, while d-epirotenone (5′β-epirotenone) gives 5′α-rotenone (the antipode of natural rotenone) as well as d-epirotenone.  相似文献   

3.
Metabolism of 2,4,4′-trichlorobiphenyl by Acinetobacter sp. strain P6 has been studied. When the incubation was carried out without shaking at 15°C, two isomeric monohydroxy compounds, a dihydrodiol compound, a dihydroxy compound, a meta-cleaved yellow compound and a dichlorobenzoic acid were detected by combined gas liquid chromatograph-mass spectrometry. As an additional metabolite, dichlorodihydroxy biphenyl, a dechlorinationhydroxylation product, was also detected. When the incubation mixture was shaken at 30°C, a meta-cleaved yellow compound was readily produced and predominantly accumulated in the reaction mixture upon further incubation. The major pathway of 2,4,4′-trichlorobiphenyl by Acinetobacter sp. P6 was considered to proceed oxidatively via 2.′3′-dihydro-2′,3′-diol compound, concomitant dehydrogenated 2′,3′-dihydroxy compound and then the 1′,2′-meta-cleaved yellow compound, i.e., 3-chloro-2-hydroxy-6-oxo-6(2,4-dichlorophenyl)hexa-2,4-dienoic acid.  相似文献   

4.
Among the γ-radiolysis products of p-bromophenol in an aqueous solution, four new oligomers were obtained. By chemical and physical techniques their structures were elucidated as ortho-, meta- and para-terphenyl in which C-4, C-2′ and C-4″ are substituted by hydroxyl groups and C-5′ by a bromine atom and as 5-bromo-2,4′,4″-trihydroxy-m-terphenyl, respectively. These oligomers may be formed by the arylation of p-bromophenol or the dimeric product with an aryl radical intermediate resulted from debromination of p-bromophenol by some radiolysis product(s) of water.  相似文献   

5.
The leaves of thyme (Thymus vulgaris L.) were found to contain new compounds, 4′-hydroxy-5,5′-diisopropyl-2,2′-dimethyIbiphenyl-3,4-dione (1), 5,5′-diisopropyl-2,2′-dimethylbiphenyl-3,4,3′,4/-tetraone (2), and 4,4′-dihydroxy-5,5′-disopropyl-2,2′-dimethylbiphenyl-3,6-dione (3a). These structures were determined by chemical and spectroscopic methods. The deodorant activity of compound 1 against methyl mercaptan was more effective than that of rosmanol, carnosol and sodium copper chlorophylline.  相似文献   

6.
Abstract

Two representative S-cyclonucleosides, 8,5′-anhydro-2′, 3′-O-isopropylidene-8-mercaptoadenosine (3) and 8,2′-anhydro-3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)-8-mercaptoguanosine (8), were prepared in good yields by dropwise addition of one equivalent each of triphenylphosphine and DEAD in DMF into a mixture of 2′,3′-O-isopropylidene-8-mercaptoadenosine (2) or 3′,5′-O-(tetra-iso-propyldisiloxane-1,3-diyl)-8-mercaptoguanosine (7), respectively, in DMF. Treatment of compound 2 with two equivalents each of triphenylphosphine and DEAD in DMF afforded N-[8,5′-anhydro-2′,3′-O-isopropylidene-8-mercaptopurin-6-yl]triphenylphospha-λ5-azene (4) in 87% yield.  相似文献   

7.
The reaction of sucrose with a combination of 2,2-dimethoxypropane, N,N-dimethylformamide, and toluene-p-sulphonic acid (reagent A) gave, after acetylation followed by chromatography, 1′,2:4,6-di-O-isopropylidenesucrose tetra-acetate (1) in 15% yield. The structure of 1 was determined on the basis of p.m.r. and mass spectrometry, and by chemical transformations. Treatment of 1 with aqueous acetic acid afforded sucrose 3,3′,4′,6′-tetra-acetate 2. Reacetalation of 2 using reagent A gave 1 in 80% yield. The p.m.r. spectrum of 2 confirmed the presence of hydroxyl groups at C-2 and C-4. The following sequence of reactions showed that the remaining two hydroxyl groups were located at C-6 and C-1′. Selective tritylation of 2 gave 1′,6-di-O-tritylsucrose 3,3′,4′,6′-tetra-acetate (3) as the minor, and 6-O-tritylsucrose 3,3′,4′,6′-tetra-acetate (4) as the major, product. When tritylation was carried out under forcing conditions, 2 gave 3 as the major product. Acetylation of 4 afforded 6-O-tritylsucrose hepta-acetate. Mesylation of 2 gave the tetramethanesulphonate 5, which afforded the 6-dcoxy-6-iodo derivative 6 on treatment with a refluxing solution of sodium iodide in butanone. Treatment of 3 with methanesulphonyl chloride in pyridine gave the disulphonate 7, which on detritylation followed by acetylation gave 2,4-di-O-methanesulphonylsucrose hexa-acetate (9). Treatment of 9 with sodium benzoate in hexamethylphosphoric triamide displaced the 4-sulphonate, with inversion of configuration, to give the galacto derivative 10.  相似文献   

8.
《Phytochemistry》1986,25(8):1953-1956
The wood bark of Mezilaurus itauba afforded in addition to seven known neolignans, three new compounds rel-(7R,8R,1′S,3′S)-Δ5′,8′-5′-methoxy-3,4-methylenedioxy-1′,2′,3′,4′-tetrahydro-2′,4′-dioxo-7.3′,8.1′-neolignan, rel-(7S,8S,1′S, 2′S, 3′R, 4′S)-Δ8′-2′,4′-dihydroxy-3,4-methylenedioxy-1′,2′,3′,4′,5′,6′-hexahydro-5′-oxo-7.3′,8.1′-neolignan and rel-(7S,8S)-Δ8′-6′-hydroxy 5′-methoxy-3,4-methylenedioxy-7·O·2′,8.3′-neolignan. The latter compound has been detected previously in Aniba terminalis. The structures were elucidated by spectroscopic methods and comparison with related compounds.  相似文献   

9.
One to four routes of synthesis are described for 8′-hydroxyrotenone, 5′-hydroxyrotenone, two epimers of 6′,7′-dihydro-6′,7′-dihydroxyrotenone, two epimers of 6′,7′-epoxyrotenone and the four rotenolones derived from each of these compounds. The stereochemical relationships are determined, in each case, by chemical interconversion, ORD and monochromatic rotation to assess the absolute configuration of the B/C ring juncture and by IR, MS and NMR for the cis- or trans-nature of this juncture. The new compounds described are useful standards for studies on the metabolites and photodecomposition products of rotenone insecticide chemical.  相似文献   

10.
Treatment of methyl 3-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside 2-chlorosulphate (2), 3,4,6,3′,4′,6′-hexa-O-acetylsucrose 2,1′-bis(chlorosulphate), 3,4,6,3′,4′,6′-hexa-O-acetyl-1′-O-benzoylsucrose 2-chlorosulphate, and 3,4,3′,4′-tetra-O-acetyl-6,6′-dichloro-6,6′-dideoxysucrose 2,1′-bis(chlorosulphate) with lithium chloride in hexamethylphosphoric triamide gave the corresponding chlorodeoxy-manno derivatives. Treatment of the 2-chlorosulphate 2 with such nucleophilic reagents as lithium bromide, sodium azide, sodium chloride, and sodium benzoate in hexamethylphosphoric triamide gave the 2-hydroxy compound as a major product. Selective chlorination at C-1′ was achieved when 3,4,6,3′,4′,6′-hexa-O-acetylsucrose was treated with sulphuryl chloride in a mixture of pyridine and chloroform.  相似文献   

11.
Abstract

5-Cyclohexyl-2′-deoxyuridine (I) is an example of a 5-substituted pyrimidine 2′-deoxynucleoside which exhibits no antiviral activity and which is not a substrate for either cellular or viral (herpes) kinases. Despite the fact that a cursory inspection of NMR spectra of the compound, taken in DMSO-d 6 solution, suggested that the compound had a normal conformation, we here show that in the crystal and in aqueous solution (analysed by 2D NMR techniques), the conformation of this nucleoside has a syn-glycosidic and C4′-exo (4E) sugar pucker conformation.  相似文献   

12.
The 1′,4,6′-trisulphonate 2, obtained by mesylation of sucrose 2,3,3′,4′,6-penta-acetate (1), undergoes nucleophilic substitution with sodium benzoate in hexamethylphosphoric triamide at positions 1′,4, and 6′ to give 1,6-di-O-benzoyl-β-D-fructofuranosyl 4-O-benzoyl-α-D-galactopyranoside penta-acetate (3), and selectively at positions 4 and 6′ to give 6-O-benzoyl-1-O-mesyl-β-D-fructofuranosyl 4-O-benzoyl-α-D-galactopyranoside penta-acetate (4). The products 3 and 4 were identified from their 1H-n.m.r. spectra and by O-deacylation to give β-D-fructofuranosyl α-D-galactopyranoside (5) and its 1-methanesulphonate 6, respectively. Treatment of the trisulphonate 2 with sodium azide gave analogous products, namely, 1,6-diazido-1,6-dideoxy-β-D-fructofuranosyl 4-azido-4-deoxy-α-D-galactopyranoside penta-acetate (8) and 6-azido-6-deoxy-1-O-mesyl-β-D-fructofuranosyl 4-azido-4-deoxy-α-D-galactopyranoside penta-acetate (7).  相似文献   

13.
The condensation of 4-formyltropolone (II) and 3,4,5-trimethoxybenzoyl-acetate (III) afforded β-[1-hydroxy-3-oxo-3-(3,′4′5′-trimethoxyphenyl)-propy]-tropolone (IV) which was dehydrated to β-[3-oxo-3-(3′,4′,5′-trimethoxyphenyl)-1-propenyl]-tropolone (V). Catalytic hydrogenation of V gave β-[3-oxo-3(3′,4′,5′-trimethoxyphenyl)-propyl]-tropolone (VI), which was further reduced to β~[3-hydroxy-3-(3′,4′,5′-trimethoxyphenyl)-propyl]-tropolone (VII). The distillation of VII afforded finally β-3-(3′,4′,5′-trimethoxyphenyl)-2-propenyl]-tropolone (VIIIa). As the route to colchicine (I) from the tropolone (VIIIa) has already been exploited,1) this shows a total synthesis of colchicine from 4-formyltropolone.  相似文献   

14.
In the course of our screening for free radical scavengers, (1′E)-erythro-4-(3′,4′-dihydroxypentenyl)oxazole (1) (1′E,4′S)-4-(3′-oxo-4′-hydroxypentenyl)oxazole (2) and 6-pentyl-α-pyrone (3) were isolated from an unidentified fungal metabolite. These compounds, especially novel oxazolyl compound 2, inhibited the bactericidal effect of the Fenton reagent toward Bacillus subtilis. They and their acetylated compounds (diAc-1 and Ac-2) also showed inhibitory activity against linoleate autoxidation. Furthermore, 1–3 inhibited oxidative enzymes (soybean lipoxygenase and mushroom tyrosinase).

To investigate the radical scavenging mechanism of 3, two oxidized products (4 and 5) were isolated from the reaction mixture of 3 and the Fenton reagent. Compounds 4 and 5 seemed to be derived from 3 by scavenging the hydroxyl radical.  相似文献   

15.
Abstract

Radical reactions of 5′-O-(2-bromo-1-methoxy)ethyl- and 5′-O-(2-propynyl)-2′,3′-dideoxy-2′,3′-didehydrouridines were investigated. Both reactions proceeded in a 6-exo-trig manner to give products cyclized regio- and stereospecifically at the 3′-position. The structures of these products were analyzed by X-ray crystallography.

  相似文献   

16.
Treatment of N6,N6,5′-O-tribenzoyl-2′,3′-O-isopropylidenetubercidin (VI) with aqueous acetic acid afforded N6,5′-O-dibenzoyltubercidin (V), which was mesylated to yield the dimesylate X. On treatment of X with sodium iodide and zinc dust, the 2′,3′-unsaturated derivatives of tubercidin XI and XIII were obtained.

N6,5′-O-Dibenzoyltubercidin 2′,3′-thionocarbonate (XIV), prepared from V by treatment with Corey-Winter reagent, was converted to the 1-methyl-2′,3′-unsaturated derivative XV in refluxing trimethyl phosphite.  相似文献   

17.
The voltammetric oxidation of adenosine-3′,5′-cyclic monophosphate (3′,5′-CAMP) has been studied in the pH range 2.13–10.07 using pyrolytic graphite electrode (PGE). Voltammetric, coulometric, spectral studies, and product characterization indicate that the oxidation of 3′,5′-CAMP occurs in an EC reaction involving a 6H+, 6e process at pH 7.24. Electrooxidized products were seperated by semipreparative high performance liquid chromatography (HPLC) and were characterized by mp, 1HNMR, FTIR, and GC-mass as allantoin cyclic ribose monophosphate and 3 dimers as the major products. A detailed interpretation of the redox mechanism of 3′,5′-CAMP also has been presented to account for the formation of various products.  相似文献   

18.
2‐Chloro‐2′‐deoxyadenosine (cladribine, 1 ) was acylated with valproic acid ( 2 ) under various reaction conditions yielding 2‐chloro‐2′‐deoxy‐3′,5′‐O‐divalproyladenosine ( 3 ) as well as the 3′‐O‐ and 5′‐O‐monovalproylated derivatives, 2‐chloro‐2′‐deoxy‐3′‐O‐valproyladenosine ( 4 ) and 2‐chloro‐2′‐deoxy‐5′‐O‐valproyladenosine ( 5 ), as new co‐drugs. In addition, 6‐azauridine‐2′,3′‐O‐(ethyl levulinate) ( 8 ) was valproylated at the 5′‐OH group (→ 9 ). All products were characterized by 1H‐ and 13C‐NMR spectroscopy and ESI mass spectrometry. The structure of the by‐product 6 (N‐cyclohexyl‐N‐(cyclohexylcarbamoyl)‐2‐propylpentanamide), formed upon valproylation of cladribine in the presence of N,N‐dimethylaminopyridine and dicyclohexylcarbodiimide, was analyzed by X‐ray crystallography. Cladribine as well as its valproylated co‐drugs were tested upon their cancerostatic/cancerotoxic activity in human astrocytoma/oligodendroglioma GOS‐3 cells, in rat malignant neuro ectodermal BT4Ca cells, as well as in phorbol‐12‐myristate 13‐acetate (PMA)‐differentiated human THP‐1 macrophages. The most important result of these experiments is the finding that only the 3′‐O‐valproylated derivative 4 exhibits a significant antitumor activity while the 5′‐O‐ as well as the 3′,5′‐O‐divalproylated cladribine derivatives 3 and 5 proved to be inactive.  相似文献   

19.
The Mitsunobu reaction was applied to prepare, in one step, purine N 3,5′‐cyclonucleosides 10a–d. A subsequent ring opening in the ribose moiety of the resultant N 3,5′‐nucleosides by sodium periodate led to the corresponding N 3,5′‐cyclo‐2′,3′‐seconucleosides. These products consist of 5‐, 6‐, and 7‐membered tricyclic system which is the basic skeleton of TIBO derivatives, known antiviral agents.  相似文献   

20.

The mode of cyclization (5-exo versus 6-endo) of 2-sila-5-hexen-1-yl radicals generated from 2′-tributylstannyl- and 2′-trimethylsilyl-6-(bromomethyl)dimethylsilyl-1′,2′-unsaturated uridines (8 and 9) was investigated. Although the actual structure of the reaction products differ from each other, reflecting the ease of elimination of the 2′-substituent, it was found that both substrates prefer the 5-exo-cyclization pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号