首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin B exhibiting Ca2+ sensitivity in superprecipitation and Mg-ATPase [EC 3.6.1.3] activity was extracted from tracheal smooth muscle. Repeated washing with 2mM KCl and 1 mM NaHCO3 resulted in the loss of these activities. However, on addition of native tropomyosin, the myosin B regained its original properties. Native tropomyosin is the regulatory system in this smooth muscle.  相似文献   

2.
Sarcoplasmic and myofibrillar proteins of a frog mixed muscle (distal cruralis bundle) were investigated and compared to their fast twitch muscle homologues. Histochemical reactions revealed two populations of fibres in this muscle, differing from fast twitch fibres by the intensity of their myofibrillar ATPase reaction and by their mitochondrial NADH dehydrogenase activity. The distribution of parvalbumins and LDH isoenzymes in the whole muscle showed some features of tonic muscle type. Myosin light chains pattern of cruralis bundle fibres was characterized by the lower proportion of the LC3 subunit. These results confirmed the heterogeneity of this frog muscle and the presence of tonic or intermediate fibres with their typical sarcoplasmic and myofibrillar proteinic composition.  相似文献   

3.
A myosin B-like protein was extracted from the alga Nitella flexilis. SDS-polyacrylamide gel electrophoresis revealed the presence of myosin heavy chain and actin as the main components. At high ionic strength, its ATPase [EC 3.6.1.3] reaction was activated by EDTA or Ca2+ and inhibited by Mg2+. At low ionic strength, superprecipitation was induced by the addition of ATP. Myosin was purified from Nitella myosin B. The molecular weight of the heavy chain of Nitella myosin, estimated by SDS-gel electrophoresis, was slightly higher than that of skeletal muscle myosin. At low ionic strength, Nitella myosin aggregated to form bipolar filaments about 0.2 micron long. At high ionic strength, its ATPase reaction was activated by EDTA or Ca2+, and inhibited by Mg2+. The Mg2+-ATPase reaction of Nitella myosin was activated by skeletal muscle F-actin.  相似文献   

4.
本文报导了牛胃肌球蛋白B(天然肌动球蛋白)的超沉淀性质。当钙离子、钙调蛋白和ATP存在时,肌球蛋白B出现超沉淀,在pH6.8和7.5处,有两个峰值。Ca~(2+)(PCa值8-4)对超沉淀影响的浓度-反应曲线呈典型的S形,表明当Ca~(2+)浓度处于微摩尔水平时产生超沉淀。伴随超沉淀发生了肌球蛋白调节轻链磷酸化。这说明肌球蛋白轻链的Ca~(2+)-CaM依赖性磷酸化可能包含在脊椎动物平滑肌收缩活动的调节机制中。  相似文献   

5.
1. The superprecipitation and ATPase activity of scallop striated muscle myosin B showed essentially the same biphasic pattern as that of vertebrate skeletal muscle myosin B in its responses to changes in the MgATP concentration. Ca2+ had no effect at MgATP concentrations less than 10(-5) M. 2. The superprecipitation of gizzard myosin B showed a weak biphasic pattern, but its ATPase activity showed no sign of a biphasic pattern up to 3 x10(-3) M MgATP, in accord with the result of Bremel (1974). 3. Thus scallop striated muscle is classified into the same group as vertebrate skeletal muscle as far as its response to changes in MgATP concentration is concerned. Gizzard is distinct from the other two kinds of muscle.  相似文献   

6.
饥饿和交配对小地老虎飞行肌发育的影响   总被引:1,自引:0,他引:1  
王伟  尹姣  曹雅忠  李克斌 《昆虫知识》2013,(6):1573-1585
小地老虎Agrotis ypsilon(Rottemburg)成虫飞行肌的发育常受一些因素影响而发生变化,为探讨饥饿和交配行为对飞行肌发育的影响,通过电子显微镜对雌虫飞行肌(背纵肌)的肌原纤维、线粒体结构进行观察,结果显示:4日龄饥饿雌虫,肌原纤维直径、肌节长度、肌原纤维体积均显著(P<0.05)小于取食的。7日龄饥饿雌虫肌原纤维直径、肌节长度、肌原纤维体积分数较4日龄的差异均不显著(P≥0.05),而7日龄饥饿的肌原纤维直径显著(P<0.05)大于7日龄取食的;羽化10 d后,饥饿雌虫肌节长度显著(P<0.05)大于取食雌虫的,而肌纤维体积分数和线粒体体积分数均却小于后者。7、10、13日龄交配雌虫肌原纤维横切直径分别显著(P<0.05)小于同日龄非交配的;7、10、13日龄交配雌虫肌原纤维体积分数显著(P<0.05)小于非交配的,线粒体体积分数虽然无差异(P≥0.05),但是交配雌虫的早在4日龄便已明显(P<0.05)减小。上述结果表明:正常取食的小地老虎飞行肌4日龄后会发生降解现象;饥饿抑制飞行肌前期发育和中期的降解,而促进成虫末期肌原纤维的分解;交配能促进飞行肌的降解。  相似文献   

7.
T Fujii  R Tanaka 《Life sciences》1979,24(18):1683-1690
The interaction between actomyosin from rabbit skeletal muscle and microtubule proteins or 6S tubulin from rat brain was investigated with respect to the change in ATPase activity and physicochemical properties. Myosin bound to both microtubule proteins and 6S tubulin at low ionic strength. In the aggregates the molar ratio of microtubule proteins or 6S tubulin to myosin was 0.5–1.5 or 1.5–2.5. The superprecipitation of actomyosin was inhibited by 6S tubulin. The degree of superprecipitation inhibition was dependent on the mixing order of myosin, actin, 6S tubulin, and ATP. When myosin was preincubated first with 6S tubulin, the inhibition was most marked. The actin activation of myosin Mg-ATPase was inhibited by both microtubule proteins and 6S tubulin with stronger effects by the latter. The preincubation of myosin with 6S tubulin prior to the addition of actin induced not only greater inhibition of ATPase but also the binding of a larger quantity of 6S tubulin to myosin than the preincubation of myosin with actin. The similar results were obtained with microtubule proteins.  相似文献   

8.
A contractile protein (actomyosin) was isolated from bovine tracheal smooth muscle by the use of "classical" procedures. The protein was considered to be actomyosin because it demonstrated: ATPase activity; superprecipitation upon the addition of ATP, and the solubility and extraction characteristics of actomyosin. The ATPase and superprecipitation reactions were not inhibited by EGTA, and did not require calcium. Lack of an effect of either calcium or EGTA could not be reversed by the addition of active bovine skeletal muscle troponin and tropomyosin. No troponin-tropomyosin like activities could be demonstrated in various tracheal muscle fractions.  相似文献   

9.
分离了扇贝闭壳肌肌钙蛋白,其分子量为46(InI),40(TnT),和22(TnC)kD.肌球蛋白B含有主要的收缩蛋白质与调节蛋白质,在有Ca2+和ATP存在时,它会发生超沉淀作用.经低离子强度溶液反复沉淀处理,即失去Ca2+-敏感性,成为去敏肌球蛋白B.在Ca2+和ATP作用下,它仍可发生超沉淀作用,但仅及最大活性的50%.若加入肌钙蛋白,则反应活性可完全恢复.兔骨骼肌肌钙蛋白可替代扇贝闭壳肌肌钙蛋白.这表明扇贝闭壳肌兼有肌动蛋白相关调节和肌球蛋白相关调节.  相似文献   

10.
Myosin head modified with p-chloromercuribenzoate (CMB) forms rigor-like complex with actin in the presence of ATP. Actomyosins with CMB-modified myosin were reconstituted to study the effect of rigor-like complexes on superprecipitation. As native myosin was increasingly replaced by CMB-modified myosin, superprecipitation of the actomyosin was strongly suppressed. Further, the suppression of superprecipitation occurred in a different fashion depending on how CMB-modified myosin was incorporated in myosin filaments of the reconstituted actomyosin. The present results indicate that superprecipitation requires the dissociation of actin and myosin head to take place (i.e., the presence of molecular rearrangements of actomyosin network), and further suggest that superprecipitation is associated with dynamic rearrangements of actomyosin network along myosin filaments.  相似文献   

11.
To clarify the reason for the decrease in CFR (color forming ratio) of pale, soft and exudative (PSE) porcine muscle, the effect of simulation of the PSE conditions on cooked cured meat color was investigated in fractionated components from porcine skeletal muscle, 24 hr postmortem. Although the solubility of total proteins and heme pigments markedly decreased in sarcoplasm by this treatment, no decline in CFR of the sarcoplasm could be observed when compared to the controls. A similar tendency was observed in both high- and low-molecular weight fractions of sarcoplasm. On the other hand, myofibrils simulated the PSE conditions in the presence of myoglobin significantly decreased CFR, and the extent of this decline was nearly consistent with the case of whole muscle. The reasons for the decrease in CFR of PSE muscle are discussed.  相似文献   

12.
The ATPase or ITPase reaction and ATP- or ITP-induced superprecipitation were studied as a function of the ATP or ITP concentration with suspensions of chicken gizzard "native" myosin B or "reconstituted" myosin B (a combination of actin, myosin, and native tropomyosin). The specific aim of the study was to answer the following questions: i) Is the superprecipitation or the ATPase reaction sensitive to calcium ions even at very low concentrations of ATP? ii) Is tropomyosin required for calcium sensitivity? iii) Does "native" myosin B from gizzard muscle behave differently from "reconstituted" myosin B? iv) Does the troponin-tropomyosin complex of rabbit skeletal muscle act as a regulatory protein for the contractile activity of acto-phosphorylated myosin? Considering the overall time course of reaction rather than single values of activity, we found that the answers to the first three questions were negative, while that to the last question was positive. These results favor the kinase-phosphatase mechanism of calcium regulation rather than the leiotonin mechanism.  相似文献   

13.
An investigation was conducted on myosin and actin-activated heavy meromyosin (HMM) ATPase activities in normal porcine muscle stored for varying periods of time after death. Studies were also made on temperature dependent myosin ATPase, initial burst of ATPase and actin-activated HMM ATPase in normal and in pale, soft and exudative (PSE) porcine muscle. The maximum velocity of acto-HMM ATPase of normal muscle decreased considerably with postmortem time, while the apparent dissociation constant decreased slightly. The maximum velocity of acto-HMM ATPase of postmortem normal muscle was approximately two-times larger than that of the corresponding PSE muscle. However, almost no difference was found in the apparent dissociation constant. The size of the initial burst of phosphate-liberation of myosin prepared from normal muscle was approximately 1.2 mol/mol of myosin and from PSE muscle 0. It is assumed that the lack of contractility of PSE muscle was brought about by two basic myosin malfunctions: one, the irreversible binding of myosin to actin filament and the other, the functional damage of myosin ATPase, responsible for the formation of phosphorylated complex, even when dissociable.  相似文献   

14.
The skeletal muscle-specific calpain-3 protease is likely involved in muscle repair, although the mechanism is not known. Physiological activation of calpain-3 occurs 24 h following eccentric exercise in humans. Functional consequences of calpain-3 activation are not known; however, calpain-3 has been suggested to be involved in nuclear signaling via NF-κB. To test this and help identify how/where calpain-3 acts, we investigated whether calpain-3 autolysis (hence, activation) following eccentric exercise results in translocation from its normal myofibrillar location to the nucleus or the cytosol. In resting human skeletal muscle, the majority (87%) of calpain-3 was present in myofibrillar fractions, with only a small proportion (<10%) in an autolyzed state. Enriched nuclear fractions contained ~8% of the total calpain-3, which was present in a predominantly (>80%) autolyzed state. Using freshly dissected human muscle fibers to identify freely diffusible proteins, we showed that only ~5% of the total calpain-3 pool was cytosolic. At 3 and 24 h following eccentric step exercise, there was an ~70% increase in autolysis in whole muscle samples (n = 11, P < 0.05, by 1-way ANOVA with repeated measures and Newman-Keuls post hoc analysis). This exercise-induced autolysis was attributed to myofibrillar-bound calpain-3, since neither the amount of calpain-3 nor the proportion autolyzed was significantly changed in enriched nuclear or cytosolic fractions following the exercise intervention. We present a model for calpain-3 localization at rest and following activation in human skeletal muscle and suggest that the functional importance of calpain-3 remains predominantly tightly associated with its localization within the myofibrillar compartment.  相似文献   

15.
In the urodelan amphibian Pleurodeles waltlii, spontaneous anatomical metamorphosis was correlated with an increase in the serum level of thyroxine (T4). It was also accompanied by a change in the myofibrillar ATPase profile of the dorsal skeletal muscle; fibers of larval type were gradually replaced by the adult fiber types I, II A, and II B. Likewise, a myosin isoenzymic transition was observed in dorsal muscle, larval isomyosins were replaced by adult isoforms. In a related species, Ambystoma mexicanum, in which no spontaneous external metamorphosis occurs under standard conditions, the serum T4 level was shown to remain low. During further development, the myofibrillar ATPase profile acquired the adult fiber types, but a high percentage of immature fibers of type II C persisted. Myosin isoenzymic transition was also incomplete; larval isoforms were still distinguished in the neotenic adults. In experimental hypothyroidian P. waltlii, no external metamorphosis occurred; the myofibrillar ATPase profile was of the immature type, and the larval isomyosins persisted. Triiodothyronine induced experimental anatomical metamorphosis in A. mexicanum; only limited changes in the myofibrillar ATPase profile resulted from the treatment, but a complete myosin isoenzymic transition was observed. These results tend to indicate that a moderate increase in the level of thyroid hormone is sufficient to induce the differentiation of adult fiber types, together with the production of adult myosin isoforms in the skeletal dorsal muscle of amphibians, while a pronounced increase would be necessary for repressing the initial larval features.  相似文献   

16.
The effect of glucagon on the rate of muscle protein synthesis was examined in vivo and in the isolated perfused rat hemicorpus. An inhibition of protein synthesis in skeletal muscles from overnight-fasted rats at various plasma concentrations of glucagon was demonstrated in vivo. The plantaris muscle (Type II, fibre-rich) was more sensitive than the soleus (Type I, fibre-rich). Myofibrillar and sarcoplasmic proteins were equally sensitive in vivo. However, protein synthesis in mixed protein and in sarcoplasmic and myofibrillar fractions of the heart was unresponsive to glucagon in vivo. In isolated perfused muscle preparations from fed animals, the addition of glucagon also decreased the synthesis of mixed muscle proteins in gastrocnemius (Type I and II fibres) and plantaris, but not in the soleus. The sarcoplasmic and myofibrillar fractions of the plantaris were also equally affected in vitro. Similar results were observed in vitro with 1-day-starved rats, but the changes were less marked.  相似文献   

17.
Myosin from chicken gizzard smooth muscle was found to be characteristically different from rabbit skeletal striated myosin: i) ATP induced a profound change in the conformation of gizzard myosin molecules. ii) ATP also induced disassembling of gizzard myosin filaments. iii) Enzymic phosphorylation of gizzard myosin light chains rendered both the myosin conformation and the myosin filaments resistant to the actions of ATP. iv) Very high concentrations of magnesium were required for formation of the ATP-resistant filaments as well as for superprecipitation (a model contraction) of actomyosin suspensions. v) ITP was a very poor substrate for MLCK, and was accordingly incapable of inducing “Ca-tension” in glycerinated fibers of gizzard muscle, but it did induce “Mg-tension.” Primarily from these findings, it was proposed that tje mechanism of gizzard muscle contraction involves ATP-induced changes in the morphology of myosin filaments which are reversibly altered by enzymic phosphorylation and dephosphorylation of myosin light chains in the presence of relatively high concentrations of magnesium.  相似文献   

18.
The interaction of the muscle elastic protein connectin with myosin and actin filaments was investigated by turbidimetry, viscosity, flow birefringence measurements, and electron microscopic observations. In KCl concentrations lower than 0.15 M at pH 7.0 at 25 degrees C, both myosin and actin filaments were aggregated by connectin. Myosin filaments were entangled with each other in the presence of connectin. Actin filaments were assembled into bundles under the influence of connectin just as under that of alpha-actinin. The physiological significance of the interactions of connectin with myosin and actin filaments is discussed in relation to the localization of connectin in myofibrils. The Mg2+-activated ATPase activity of actomyosin was appreciably enhanced by connectin in the presence of KCl concentrations lower than 0.1 M. The extent of activation by connectin was smaller than by alpha-actinin. The enhancement of the ATPase activity may be due to acceleration of the onset of superprecipitation of actomyosin.  相似文献   

19.
Myofibrillar protein degradation was measured in 4-week-old normal (line 412) and genetically muscular-dystrophic (line 413) New Hampshire chickens by monitoring the rates of 3-methylhistidine excretion in vivo and in vitro. A method of perfusing breast and wing muscles was developed and the rate of 3-methylhistidine release in vitro was measured between 30 and 90min of perfusion. During this perfusion period, 3-methylhistidine release from the muscle preparation was linear, indicating that changes in 3-methylhistidine concentration of the perfusate were the result of myofibrillar protein degradation. Furthermore, the viability of the perfused muscle was maintained during this interval. After 60min of perfusion, ATP, ADP and creatine phosphate concentrations in pectoral muscle were similar to muscle freeze-clamped in vivo. Rates of glucose uptake and lactate production were constant during the perfusion. In dystrophic-muscle preparations, the rate of 3-methylhistidine release in vitro (nmol/h per g of dried muscle) was elevated 2-fold when compared with that in normal muscle. From these data the fractional degradation rates of myofibrillar protein in normal and dystrophic pectoral muscle were calculated to be 12 and 24% respectively. Daily 3-methylhistidine excretion (nmol/day per g body wt.) in vivo was elevated 1.35-fold in dystrophic chickens. Additional studies revealed that the anti-dystrophic drugs diphenylhydantoin and methylsergide, which improve righting ability of dystrophic chickens, did not alter 3-methylhistidine release in vitro. This result implies that changes in myofibrillar protein turnover are not the primary lesion in avian muscular dystrophy. From tissue amino acid analysis, the myofibrillar 3-methylhistidine content per g dry weight of muscle was similar in normal and dystrophic pectoral muscle. More than 96% of the 3-methylhistidine present in pectoral muscle was associated with the myofibrillar fraction. Dystrophic myofibrillar protein contained significantly less 3-methylhistidine (nmol/g of myofibrillar protein) than protein from normal muscle. This observation supports the hypothesis that there may be a block in the biochemical maturation and development of dystrophic muscle after hatching. Free 3-methylhistidine (nmol/g wet wt.) was elevated in dystrophic muscle, whereas blood 3-methylhistidine concentrations were similar in both lines. In summary, the increased myofibrillar protein catabolism demonstrated in dystrophic pectoral muscle correlates with the increased lysosomal cathepsin activity in this tissue as reported by others.  相似文献   

20.
Summary Myosin mRNA distribution was compared to the distribution of striations, nuclei, and cytoskeletal components in normal fibers and in fibers undergoing growth and repair processes in response to stretch. Plantarflexion of rabbit lower hindlimb for 4 or 6 days resulted in a 35% increase in weight of the tibialis anterior muscle. Slow myosin expression in stretched fibers increased such that the proportion of fibers shifted from the fast type towards an intermediate type. Semi-quantitative in situ hybridization revealed a large increase in concentration of slow myosin mRNA in stretched fibers. Polysomes translating myosin heavy chain were excluded from the intact myofibrillar lattice. Significant increases of myosin mRNA concentration occurred only in the outer 8 m subsarcolemmal annulus of these stretched fibers (P<0.001) where myofibril formation also was evident. In some fibers, stretch caused myofibrillar disorder where nuclei became centrally located, and focal concentrations of myosin mRNA also occurred. We discuss mechanisms for mRNA accumulation and favor free diffusion to loosely packed cytoplasmic regions where myosin is needed for myofibrillar growth and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号