首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(S)-(+)-Citramalic-acid-producing activity in microorganisms was studied with resting cells in a reaction mixture containing itaconic acid. Itaconic-acid-utilizing bacteria were found to produce (S)-(+)-citramalic acid from itaconic acid. The strain, which showed the best productivity among those studied, was identified taxonomically as Alcaligenes denitrificans strain MCI2775. (S)-(+)-Citramalic acid produced by this strain was present in a 99.9% enantiometric excess. The culture and reaction conditions for the production were optimized for this strain. Addition of Mn2+, d-pantothenic acid and l-leucine to the culture medium enhanced the (S)-(+)-citramalic acid-producing activity. Under optimal conditions, 27 g (S)-(+)-citramalic acid/l was produced in 30 h. The yield to itaconic acid added was 69.0 mol%. Correspondence to: Y. Asano  相似文献   

2.
The effects of sucrose (S) and pectin (P) concentrations and the ratio between two distinct pectins (R) on the rheological behavior of diluted pectin systems were evaluated simultaneously using the surface response methodology. The systems were composed of a mixture of two high methoxy pectins with different degree of methyl esterification values (HM1/HM2) and of a mixture of a high-methoxy with an amidated low-methoxy pectin (HM1/LMA). For the HM1/HM2 systems, the multivariate analysis showed that the sucrose and pectin concentrations exerted statistically significant (p < 0.05) linear effects on the consistency index k and viscosity, the influence of pectin being about five times higher than that of sucrose. The pectin concentration and the ratio between the different pectins were shown to be significant with respect to the rheological parameters of the HM1/LMA systems. Evaluating the influence of the ratio between the different pectins, a synergistic effect on the structure reinforcement was observed when mixing HM1 and LMA in similar proportions, indicating the importance of the presence of hydrophobic interactions between methyl ester groups in addition to the stronger hydrogen bonding in junction zone stabilization. In general, the conditions in which hydrogen bonds were favored in relation to hydrophobic interactions led to systems with higher pseudoplasticity.  相似文献   

3.
Simultaneous production of citric acid (CA) and invertase by Yarrowia lipolytica A-101-B56-5 (SUC+ clone) growing from sucrose, mixture of glucose and fructose, glucose or glycerol was investigated. Among the tested substrates the highest concentration of CA was reached from glycerol (57.15 g/L) with high yield (YCA/S = 0.6 g/g). When sucrose was used, comparable amount of CA was secreted (45 g/L) with slightly higher yield (YCA/S = 0.643 g/g). In all cultures amount of isocitrate (ICA) was below 2% of total citrates. Considering invertase production, the best carbon source appeared to be sucrose (72 380 U/L). The highest yield of CA and invertase biosynthesis calculated for 1 g of biomass was obtained for cells growing from glycerol (9.9 g/g and 4325 U/g, respectively). Concentrates of extra- and intracellular invertase of the highest activity were obtained from sucrose as substrate (0.5 and 1.8 × 106 U/L, respectively).  相似文献   

4.
Hypoxanthine riboside (HXR) is a nucleoside essential for wobble base pairs to translate the genetic code. In this work, an absorption and luminescence study showed that HXR and human serum albumin (HSA) formed a new complex through hydrogen bonds and van der Waals forces at ground state. Fluorescence probe experiments indicated that HXR entered the first subdomain of domain II in HSA and was fixed by amino acid residues in site I defined by Sudlow, and after competing with a known site marker. The recognition interaction featured negative ΔH?, ΔS? and ΔG? thermodynamic parameters. Fluorescence and circular dichroism spectra described the polarity of residues and α‐helix and β‐strand content changed because of HXR binding. The most rational structure for the HXR–HSA complex was recommended by the molecular docking method, in which the binding location, molecular orientation, adjacent amino acid residues, and hydrogen bonds were included. In addition, the influence of β‐cyclodextrin and some essential metal ions on the balance of the HSA–HXR system interaction was measured. The study gained comprehensive information on the transportation mechanism for HXR in blood, and was of great significance in understanding the theory of HXR biotransformation and in discussing its clinical in vivo half‐life.  相似文献   

5.
Two sucrose phosphorylases were employed for glycosylation of carboxylic acid compounds. Streptococcus mutans sucrose phosphorylase showed remarkable transglycosylating activity, especially under acidic conditions. Leuconostoc mesenteroides sucrose phosphorylase exhibited very weak transglycosylating activity. Three main products were detected from the reaction mixture using benzoic acid and sucrose as an acceptor and a donor molecule, respectively. These compounds were identified as 1-O-benzoyl α-d-glucopyranoside, 2-O-benzoyl α-d-glucopyranose, and 2-O-benzoyl β-d-glucopyranose by 1D-and 2D-NMR analyses of the isolated products and their acetylated products. Time-course analyses proved that 1-O-benzoyl α-d-glucopyranoside was initially produced by the transglycosylation reaction of the enzyme. 2-O-Benzoyl α-d-glucopyranose and 2-O-benzoyl β-d-glucopyranose were produced from 1-O-benzoyl α-d-glucopyranoside by intramolecular acyl migration reaction. S. mutans sucrose phosphorylase showed broad acceptor-specificity. This sucrose phosphorylase catalyzed transglycosylation to various carboxylic compounds such as short-chain fatty acids, hydroxy acids, dicarboxylic acids, and phenolic carboxylic acids. 1-O-Acetyl α-d-glucopyranoside was also enzymatically synthesized by transglucosylation reaction of the enzyme. The sensory test of acetic acid and the glucosides revealed that the sour taste of acetic acid glucosides was significantly lower than that of acetic acid.  相似文献   

6.
(L -Cys)n, (L -Lys)n, and (L -Glu)n were studied by ir spectroscopy in terms of their degree of deprotonation or protonation. It is shown that structurally symmetrical, easily polarizable SH ?S? ? ?S ?HS, N+H ?N ? N ?H+N, and OH ?O? ? ?O ?HO hydrogen bonds are formed between the side chains. The different wave number distributions of the ir continua caused by these hydrogen bonds show that the barrier in the double-minimum proton potential decreases in the series of these hydrogen bonds. The stability of these hydrogen bonds against hydration increases in this series. The OH ?O? ? ?O ?HO bonds are not broken by small amounts of water. With (L -Cys)n the formation of easily polarizable hydrogen bonds and a β-structure–coil transition are strongly interdependent. As a result of this coupling effect, the β-structure–coil transition becomes cooperative. With (L -Glu)n, the formation of the polarizable hydrogen bonds and the observed conformational change are independent processes. The (L -Glu)n conformation changes from α-helix to coil only if more than 80% of the residues are deprotonated. Finally, on the basis of the various types of easily polarizable hydrogen bonds, charge shifts in active centers of enzymes and the proton-conducting mechanism through hydrophobic regions of biological membranes are discussed.  相似文献   

7.
Abstract— The properties of RNA fractions from nuclei of brain cells which were capable of stimulating amino acid incorporation into proteins of an homologous ribosomal system were investigated. RNA was routinely prepared from crude nuclear preparations of rat brain by a method which involved treatment with sodium dodecyl sulphate and phenol at 65°. The capacity of this preparation to stimulate incorporation of radioactivity from a mixture of 15 l -[14C]amino acids was greatly enhanced by preliminary incubation of the ribosomal system from brain for 5–20 min. The response was markedly dependent upon the concentrations of ribosomes and of the pH 5 fraction. The optimal level of Mg2+ for basal incorporation of amino acids into protein was 8 mm ; however, incorporation in the presence of nuclear RNA was greater at higher concentrations of Mg2+. The response to nuclear RNA was also enhanced as the K+ concentration was increased from 25 to 100 mm . The stimulatory effect of nuclear RNA on incorporation of l -[12C]eucine was either unaltered or depressed by addition of a mixture of 19 l -[12C]amino acids each at concentrations, of 10?8, 10?2, or 10?1 mm . Under appropriate conditions of incubation, basal rates of incorporation and rates of incorporation stimulated by nuclear RNA were linear for 30 min. The response was proportional to the concentration of nuclear RNA between 34 and 136 μg. RNA prepared from ribosomes of rat brain essentially failed to stimulate incorporation of amino acids over this range of concentrations. Fractionation of nuclear RNA by centrifugation in sucrose density gradients revealed that 75 per cent of the stimulatory activity was in the fraction which sedimented below 12 S and contained about 25 per cent of the total RNA. Most of the remaining activity was in the 18 S region. Less than 5 per cent of the RNA in the lightest fraction (< 12 S) exhibited amino acid-acceptor activity, The stimulatory action of nuclear RNA on incorporation of amino acids was readily destroyed by mild treatment with pancreatic ribonuclease, whereas amino acid-acceptor activity was relatively resistant to this treatment. The results suggest that the brain may contain low molecular weight RNA with properties of messenger RNA.  相似文献   

8.
(L -Cys)n + N-base systems and (L -Cys)n + (L -Lys)n systems were studied by ir spectroscopy. It is shown that in the water-free systems, SH ?N ? S? ?H+N hydrogen bonds are formed. With the (L -Cys)n + N-base systems, both proton-limiting structures in the SH ?N ? S? ?H+N bonds have equal weight when the pKa of the protonated N-base is 2 pKa units larger than that of (L -Cys)n. The same is true with the water-free (L -Cys)n + (L -Lys)n system. Thus, with regard to the type of proton potentials present, these hydrogen bonds are proton-transfer hydrogen bonds showing very large proton polarizabilities. This is confirmed by the occurrence of continua in the ir spectra. Small amounts of water open these hydrogen bonds and increase the transfer of the proton to (L -Lys)n. In the (L -Lys)n + N-base systems, with increasing proton transfer the backbone of (L -Cys)n changes from antiparallel β-structure to coil. In (L -Cys)n + (L -Lys)n, the conformation is determined by the (L -Lys)n conformation and changes depending on the chain length of (L -Lys)n. Finally, the reactivity increase in the active center of fatty acid synthetase, which should be caused by the shift of a proton, is discussed on the basis of the great proton polarizability of the cysteine–lysine hydrogen bonds.  相似文献   

9.
Brown trout were exposed for 63 days to five treatments: a control; the purified cyanobacterial hepatotoxin microcystin—LR (MC—LR) (41—57 μg MC—LR 1?1); lysed toxic Microcystis aeruginosa cells (41–68 μg MC—LR 1?1 and 288 μg chlorophyll a 1?1); lysed non—toxic M. aeruginosa cells (non—MC—LR containing and 288 μg chlorophyll a 1?1); ammonia (65–325 μg NH3 1?1). All treatments produced significantly reduced growth compared to controls (P<0·05, Fisher test). Exposure to ammonia resulted weight loss over the first 7 days followed by weight increase, though at a significantly lower level than in the other treatments. First exposed to lysed toxic M. aeruginosa cells grew less than those exposed to lysed non—toxic cyanobacteria or purified MC—LR. Sodium influx rates after 63 days exposure to purified MC—LR, lysed toxic M. aeruginosa cells, or ammonia showed a significant increase compared to control fish or those exposed to lysed non—toxic M. aeruginosa cells. There were no significant differences in Na+ efflux or net Na+ uptake rates between treatments. Significant increases in body Na+ and Cl were seen in fish exposed to lysed toxic M. aeruginosa cells or ammonia. Only fish exposed to ammonia showed a significant increase in body ammonia. Short—term exposure, over 4 h, to lysed toxic cells, non—toxic cells or purified MC—LR resulted in insignificant changes in Na+ flux rates compared to controls although there was a significant net Na+ loss in fish exposed to ammonia. Chronic exposure of fish to toxic cyanobacterial blooms may result in ionic imbalance and reduced growth.  相似文献   

10.
The enzyme ribulose bisphosphate carboxylase/oxygenase has been purified from Chromatium vinosum. When an extract is subjected to centrifugation at 35,000xg in the presence of polyethylene glycol (PEG)-6000 and the supernatant is treated with 50 mM Mg2+ and the precipitate is then fractionated by vertical centrifugation into a reoriented sucrose gradient followed by chromatography on diethylaminoethyl (DEAE)-Sephadex A50, the resultant enzyme contains large (L) and small (S) subunits. Alternatively, centrifugation of extracts at 175,000xg in the presence of PEG-6000 followed by fractionation with Mg2+, density gradient centrifugation, and chromatography on DEAE-Sephadex A50 yields an enzyme free of small subunits. The two forms have comparable carboxylase and oxygenase activities and have compositions and molecular weights corresponding to L8 and L8S8 enzymes. The amino acid compositions of L and S subunits are reported. The L8S8 enzyme from spinach cannot be similarly dissociated by centrifugation at 175,000xg in the presence of PEG-6000.Abbreviations DEAE diethylaminoethyl - EDTA ethylenediamine-tetraacetate - MOPS 3-(N-morpholino)propanesulfonic acid - PEG polyethylene glycol - RuBisCO d-ribulose 1,5-bisphosphate caboxylase/oxygenase - RnBP d-ribulose 1,5-bisphosphate - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Dedicated to Professor G. Drews on occasion of his 60th birthday  相似文献   

11.
Interpretation of gas chromatographic-mass spectrometric data of oligosaccharide alditols was used to determine their structures and to derive the structure of a water soluble polysaccharide isolated fromChlorella kessleri.1H- and13C-NMR was employed to assess the configuration of glycosidic bonds and individual monosaccharides were assigned to thel ord series by means of gas chromatography of the acetylated (S)-2-butyl glycosides.  相似文献   

12.
Summary The effect of a single pulse of ammonium sulphate or of citrate upon the progress and final outcome of a batch citric acid fermentation was studied. It was found that the optimum addition time for the supplemental N was in the range of 40 to 75 h. Final citric acid concentration achieved was significantly increased when the concentration of N source added was between 0.25 and 0.5 kg m–3. The mechanism of the observed stimulation seemed to be an indirect one. Addition of exogenous citric acid to the broth, led to an increase in citrate production by the culture. The optimum time for citric acid addition was around 90 h.Nomenclature Yp/s Yield of citric acid produced (kg) on sucrose consumed (kg) - P/t Overall citric acid productivity (kg m–3 h–1)  相似文献   

13.
Abstract— Bovine pineal gland S-adenosylmethionine: N-acetylserotonin O-methyltransferase has been purified about 2800-fold using cell fractionation, ammonium sulphate treatment, Sephadex G-200 gel filtration and anion exchange chromatography. The enzyme has been found to be a polymer; the smallest unit observed had a mol. wt. of 21,800 and the other polymers' molecular weights were multiples of this figure. In the gland extract polymers of 83,000, 100,000, 125,000 and 150,000 mol. wt. were more abundant than the others; they showed also higher specific activity. One of the products of the reaction, S-adenosylhomocysteine was found to be a potent inhibitor, whereas the other product, melatonin, did not inhibit the bovine pineal gland enzyme, even at much higher concentrations. Homocysteic acid, cysteic acid, GSG and GSSG inhibited the enzyme. The required concentrations for this effect was 100 times higher than that of S-adenosylhomocysteine. The addition of GSH to the medium during purification led to complete loss of activity. Adenosine, homocysteine and other thio compounds had little or no effect. The enzyme was found to be activated by its substrates and also by certain anions. Among various organic acid salts, citric acid cycle intermediates were found to be good activators; their nonsubstituted analogues were not as effective. The activator effect of oxaloacetate and bicarbonate was the highest, and was brought about by relatively low concentrations of these anions (1–5 × 10?3 M), hence their effect was considered specific. The degree of activation caused by oxaloacetate was decreased by increasing substrate concentrations and vice versa. The S-adenosylhomocysteine inhibition could not be reduced by increasing the substrate concentration; S-adenosylhomocysteine also inhibited the oxaloacetate-activated enzyme. These observations have been explained by the allosteric behaviour of the enzyme. The kinetic behaviour of various polymers was also investigated. The highest substrate and oxaloacetate activation and the highest S-adenosylhomocysteine inhibition was observed for polymers of 83,000, 100,000, 125,000 and 150,000 mol. wt. The Km values for S-adenosylmethionine and N-acetylserotonin calculated for the oxaloacetate activated enzyme were also lower for these polymers than others.  相似文献   

14.
Summary The role of intracellular levels of cyclic AMP in the control of citic acid accumulation by Aspergillus niger has been investigated. For this purpose, A. niger was grown in media containing either high (14%, w/v) or low (2%, w/v) concentrations of sucrose, supplemented with 10 M Mn2+ (manganese-sufficient) or not (manganese-deficient), to obtain conditions leading to variable citrate accumulation. Citric acid accumulation was only observed in high-sugar, manganese-deficient medium. Intracellular levels of cyclic AMP were significantly higher in mycelia grown on low-sugar media, but were not significantly influenced by the absence of manganese ions. When sucrose in the high-sugar medium was substituted by other mono- or disaccharides, similar intracellular concentrations of cyclic AMP were observed. However, citric acid accumulation was only significant with sucrose, glucose and fructose. It is thus concluded that the intracellular level of cyclic AMP is not causally related to the accumulation of citric acid by the fungus, and —noteworthy — is not affected by manganese deficiency (despite adenylate cyclase reputed to be a manganese-requiring enzyme).Offprint requests to: C. P. Kubicek  相似文献   

15.
Aspergillus niger CFTRI 30 produced 1.3 g citric acid/10 g dry coffee husk in 72 h solid-state fermentation when the substrate was moistened with 0.075 M NaOH solution. Production was increased by 17% by adding a mixture of iron, copper and zinc to the medium but enrichment of the moist solid medium with (NH4)2SO4, sucrose or any of four enzymes did not improve production. The production of about 1.5 g citric acid/10 g dry coffee husk at a conversion of 82% (based on sugar consumed) under standardized conditions demonstrates the commercial potential of using the husk in this way.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India;  相似文献   

16.
The objective of this investigation was to compare two sampling methods (expectoration and ingestion) of single component water solutions (sweet—5% sucrose, sour—0.006% citric acid, bitter—0.027% caffeine, salty—0.325% sodium chloride) using time-intensity (T-I) evaluations. Analysis of variance was used to evaluate significant differences. There were subject inconsistencies for the recording times (RT) of sucrose, caffeine and sodium chloride tastes among the sampling methods. No panel differences were found for citric acid duration (RT) between ingested or expectorated samples. Individual contradictions for amplitude sucrose and sodium chloride mixtures were apparent however, the panel demonstrated no differences among the amplitude means between the sampling methods for citric acid and caffeine solutions. Aftertastes for ingested sodium chloride solutions were significantly (P < 0.01) greater than for expectorated samples whereas sampling techniques had no effect upon caffeine aftertastes. Individual contradictions were apparent for citric acid and sucrose aftertastes between the sampling methods.  相似文献   

17.
In almond, gametophytic self-incompatibility is controlled by a single multiallelic locus (S-locus). In styles, the products of S-alleles are ribonucleases, the S-RNases. Cultivated almond in California have four predominant S-alleles (S a, S b, S c, S d). We previously reported the cDNA cloning of three of these alleles, namely S b, S c and S d. In this paper we report the cloning and DNA sequence analysis of the S a allele. The Sa-RNase displays approximately 55% similarity at the amino-acid level with other almond S-RNases (Sb, Sc, and Sd) and this similarity was lower than that observed among the Sb, Sc and Sd-RNases. Using the cDNA sequence, a PCR-based identification system using genomic DNA was developed for each of the S-RNase alleles. Five almond cultivars with known self-incompatibility (SI) geno-types were analyzed. Common sequences among four S-alleles were used to create four primers, which, when used as sets, amplify DNA bands of unique size that corresponded to each of the four almond S-alleles; S a (602 bp), S b (1083 bp), S c (221 bp) and S d (343 bp). All PCR products obtained from genomic DNA isolated from the five almond cultivars were cloned and their DNA sequence obtained. The nucleotide sequence of these genomic DNA fragments matched the corresponding S-allele cDNA sequence in every case. The amplified products obtained for the S a- and S b-alleles were both longer than that expected for the coding region, revealing the presence of an intron of 84 bp in the S a-allele and 556 bp in the S b-allele. Both introns are present within the site of the hypervariable region common in S-RNases from the Rosaceae family and which may be important for S specificity. The exon portions of the genomic DNA sequences were completely consistent with the cDNA sequence of the corresponding S-allele. A useful application of these primers would be to identify the S-genotype of progeny in a breeding program, new varieties in an almond nursery, or new grower selections at the seedling stage. Received: 21 June 1999 / Accepted: 15 November 1999  相似文献   

18.
Intact cells of Kluyvera citrophila KY 3641 produced enzymaticaily d(—)-α-aminobenzyl-penicillin from 6-arainopenicillanic acid and phenylglycine derivatives. The optimum pH of the acylase was 6.5. Among various phenylglycine derivatives examined as substrates, d-phenylglycine methylester HC1 was the best compound giving the yields of about 10.7 mg/ml of d(—)-α-aminobenzy]penicillin in the enzymic reaction mixture. The product was isolated in a crystalline form and identified as d(—)-α-aminobenzylpenicillin.  相似文献   

19.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

20.
Summary The influence of various carbon sources and their concentration on the production of citrate by Aspergillus niger has been investigated. The sugars maltose, sucrose, glucose, mannose and fructose (in the given order) were carbon sources giving high yields of citric acid. Optimal yields were observed at sugar concentrations of 10% (w/v), with the exception of glucose (7.5%). No citric acid was produced on media containing less than 2.5% sugar. Precultivation of A. niger on 1% sucrose and transference to a 14% concentration of various other sugars induced citrate accumulation. This could be blocked by the addition of cycloheximide, an inhibitor of de novo protein synthesis. This induction was achieved using maltose, sucrose, glucose, mannose and fructose, and also by some other carbon sources (e.g. glycerol) that gave no citric acid accumulation in direct fermentation. Precultivation of A. niger at high (14%) sucrose concentrations and subsequent transfer to the same concentrations of various other carbohydrates, normally not leading to citric acid production, led to formation of citrate. Endogenous carbon sources were also converted to citrate under these conditions. A 14%-sucrose precultivated mycelium continued producing some citrate upon transfer to 1% sugar. These results indicate that high concentrations of certain carbon sources are required for high citrate yields, because they induce the appropriate metabolic imbalance required for acidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号