首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An l-glutamic acid (l-GA)-forming bacterium. Microbacterium ammoniaphium was cultured in the molasses medium with or without poiyoxyethylene fatty acid esters to obtain l-GA-accumulating cells or non-accumulating cells, respectively.

Then protoplast-like bodies (PLB) were prepared from each group of cells by reacting them with egg white lysozyme.

l-GA-accumulating reaction by the PLB was carried out under high and low osmotic pressures.

From the results of the experiment, it was shown that the difference in the ability of l-GA accumulation between l-GA-accumulating cells and non-accumulating cells was attributed mainly to the difference in the nature of the cell membrane.

Further, the relationship between the molar ratio of saturated fatty acids/unsaturated fatty acids which was reported previously and the nature of the membrane was discussed.

The lipid composition of the cell membrane from Microbacterium ammoniaphilum was determined by thin-layer and column chromatographies to make clear the relation between the extracellular accumulation of l-glutamic acid and the lipid in the cell membrane. When polyoxyethylene fatty acid ester was added to the beet medium and a large amount of l-glutamic acid was accumulated, the increase of the saturated fatty acid (C16, C18) in the neutural lipid fraction and the decreases of the phospholipid fraction and the unsaturated fatty acid (C181=) in the neutral lipid fraction were recognized.  相似文献   

2.
A thiaisoleucine-resistant mutant, ASAT–372, derived from a threonine producer of Corynebacterium glutamicum, KY 10501, produced 5 mg/ml each of l-isoleucine and l-threonine. l-Isoleucine productivity of ASAT–372 was improved stepwise, with concurrent decrease in threonine production, by successively endowing it with resistivity to such substances as ethionine, 4-azaleucine and α-aminobutyric acid. The mutant strain finally selected, RAM–83, produced 9.7 mg/ml of l-isoleucine with a medium containing 10% (as sugar) molasses.

l-Isoleucine production was significantly affected by the concentration of ammonium sulfate in the fermentation medium. At 4% ammonium sulfate l-isoleucine production was enhanced whereas l-threonine production was suppressed. At 2% ammonium sulfate l-threonine production was stimulated while l-isoleucine production decreased.  相似文献   

3.
Micrococcus glutamicus, a glutamate-produeing bacterium, is known to have strong activity of l-glutamic acid dehydrogenase which requires NADP as co-enzyme. In this paper, the NADP-speeifie l-glutamic acid dehydrogenase was purified from M. glutamicus by means of heat treatment with sodium sulfate, precipitation with acetic acid and diethyl-amino-ethyl (DEAE) cellulose column chromatography. The activity of the purified enzyme preparation reached 200-fold as high as that of the crude extract. Some properties of the purified enzyme were investigated. As a result, it was found that the highly purified enzyme preparation acted not only on l-glutamic acid (l-GA) but also on α, ε-diaminopimelic acid (α, ε-DAP) in the presence of NADP. Some of the probable consideration for the dehydrogenation of l-GA and α, ε-DAP are noted.  相似文献   

4.
Microorganisms which require oleic acid for the formation of antibiotics were screened. Streptomyces sp. No. 362, one of the selected organisms, produced antimicrobial substances only when oleic acid, palmitic acid or the high concentration of l-glutamic acid (or l-glutamine) was supplemented to the medium. The cellular fatty acid composition was changed by the supplement of these fatty acids, but not by l-glutamic acid (or l-glutamine). Antibiotic-producing cells had about 4 to 10 times larger amino acid pools, especially l-glutamic acid pool, and hexosamine pools. The ability for l-glutamate uptake of cells grown in the oleic or palmitic acid supplemented medium was markedly enhanced and the efflux of the accumulated l-glutamate was reduced. The antibiotic produced by this strain was identified as one of the streptothricin-group antibiotics and the role of these additives in the antibiotic formation is discussed.  相似文献   

5.
Most of the bacteria, which were examined for the sensitivity to l-arginine analogs (l-canavanine, l-homoarginine, d-arginine and arginine hydroxamate), were insensitive to the analogs at a concentration of 8 mg/ml. Corynebacterium glutamicum DSS-8 isolated as d-serine-sensitive mutant from an isoleucine auxotroph KY 10150, was found to be sensitive to d-arginine and arginine hydroxamate. Furthermore, DSS-8 produced l-arginine in a cultural medium. l-Arginine analog-resistant mutants were derived from DSS-8 by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) treatment. Most of them were found to produce a large amount of l-arginine. An isoleucine revertant from one of these mutants produced 19.6 mg/ml of l-arginine in the medium containing 15% (as sugar) of molasses.

The mechanism of the sensitivity to l-arginine analogs and that of the production of l-arginine in the d-serine-sensitive mutant, DSS-8, were investigated. DSS-8 seems to be a mutant having increased permeability to d- and l-arginine.  相似文献   

6.
Mutants resistant to α-amino-β-hydroxyvaleri0c acid (AHV) were derived from various bacteria which belong to Corynebacterium, Brevibacterium, Arthrobacter, Microbacterium, or Bacillus by mutational treatment with N-methyl-N′-nitro-N-nitrosoguanidine(NTG), and screened for their ability to produce l-threonine. A number of l-threonine producers were obtained from each group of bacteria. Among them, the mutants derived from C. glutamicum KY9159(Met?) were further mutagenized with NTG to derive thialysine(S-Lys)-resistant mutants. An AHV-resistant mutant, KY10484 was proved to be much more sensitive to the growth inhibition by thialysine than the parent strain, KY9159. From KY10484, a number of AHV- and thialysine-resistant mutants were derived. Approximately a half of these mutants were found to produce more l-threonine than KY10484. Among these mutants, KY10440 (Met?, AHVR, s-LysR) was used to investigate the cultural conditions for l-threonine production. The growth of KY10440 decreased largely with addition of l-homoserine, a threonine precursor. l-Asparagine, l-cystine, l-glutamine or l-arginine partially reversed the inhibitory effect of l-homoserine. Addition of these amino acids at low level led to increase l-threonine production. The amount of l-threonine accumulation reached to a level of 14mg/ml with a medium containing 10% glucose and to a level of 10 mg/ml with a medium containing 5% molasses (as glucose).

Another AHV- and thialysine-resistant mutant, KY10251 which was also derived from KY9159 was found to produce both 9 mg/ml of l-threonine and 5.5 mg/ml of l-lysine in a culture broth.  相似文献   

7.
l-Sorbose metabolism in Pseudomonas aeruginosa IFO 3898 was studied. When the strain was cultivated in l-sorbose medium, l-idonic and 2-keto-l-gulonic acids were detected in the culture broth.

From the results on the metabolism of various sugars and sugar acids with the cell suspension and the metabolites accumulated, the following pathway was proposed for the l-sorbose metabolism in Ps. aeruginosa IFO 3898.

l-Sorbose → l-idose → l-idonic acid → 2-keto-l-gulonic acid.  相似文献   

8.
Conditions suitable for the cell wall lysis of a l-glutamate-producing bacterium, Microbacterium ammoniaphilum, by egg white lysozyme were studied, in order to make clear the correlation of the fatty acid composition of the cellular fractions and the extracellular accumulation of l-glutamate,

The cell wall of a phage-resistant strain was recognized to be almost completely lyzed by the lysozyme.

Using this result, the relationship between the fatty acid composition of each fraction and extracellular accumulation of l-glutamate was investigated, and the following thesis was proposed: The extracellular accumulation of l-glutamate in large quantity took place when the molar ratio of saturated/unsaturated fatty acid in the cell membrane fraction was above 1.  相似文献   

9.
Potent l-valine producers were screened among 2-thiazolealanine resistant mutants derived from three typical l-glutamic acid producing bacteria: Brevibacterium lactofermentum, Corynebacterium acetoacidophilum, Arthrobacter citreus. By strain No. 487, the best producer derived from Brevibacterium, 31 mg/ml of l-valine was produced after 72 hr when 10% glucose was supplied as a carbon source, thus giving the yield of 31% from glucose. Accumulation of the other amino acids was negligible. The addition of l-isoleucine and l-leucine in the culture medium did not reduce the l-valine production, indicating that the l-valine biosynthesis is insensitive to these end products in the l-valine producer.  相似文献   

10.
We evaluated the substrate specificities of four proline cis-selective hydroxylases toward the efficient synthesis of proline derivatives. In an initial evaluation, 15 proline-related compounds were investigated as substrates. In addition to l-proline and l-pipecolinic acid, we found that 3,4-dehydro-l-proline, l-azetidine-2-carboxylic acid, cis-3-hydroxy-l-proline, and l-thioproline were also oxygenated. Subsequently, the product structures were determined, revealing cis-3,4-epoxy-l-proline, cis-3-hydroxy-l-azetidine-2-carboxylic acid, and 2,3-cis-3,4-cis-3,4-dihydroxy-l-proline.  相似文献   

11.
Two auxotrophic mutants of Corynebacterium glutamicum were found to produce a large amount of l-proline in the culture medium. High concentration of MgSO4 or MnSO4 in the medium stimulated the l-proline production by an isoleucine auxotroph. Optimum concentration of l-isoleucine was 200 μg/ml, and the higher concentration of l-isoleucine reduced the l-proline production. The auxotroph produced 14.8 mg/ml of l-proline when cultured in a medium containing 12% glucose, 1.7% NH4C1,0.6% MgSO4·7H2O, 0.06% MnSO4·4H2O and 200 μg/ml of l-isoleucine. The other mutant, whose growth responds to the bases of nucleic acids, produced 7 to 13 mg/ml of l-proline in a cane molasses (15%, as glucose concentration)-medium containing 2% of the acid-hydrolyzate of soybean meal. The l-proline production by this mutant increased to a level of 27 to 31 mg/ml when the growth was suppressed by the addition of 4% NH4C1 to the medium, or by the addition of 2 mg/ml of polyoxyethylenestearylamine, a surfactant, to a culture at an appropriate stage of the fermentation.  相似文献   

12.
We previously constructed an l-threonine-producing strain of E. coli W, KY8280, which is an Ile+ revertant of KY8279 which requires l-methionine, a,£-diaminopimelic acid and l-isoleucine [H. Kase et al., Agric. Biol. Chem., 35, 2089 (1971)]. From KY8280, another l-threonine-hyperproducing strain, KY8366, was obtained as an α-amino-β-hydroxy valeric acid (AHV, a threonine analog)-resistant mutant. Enzymatic analysis revealed that KY8280 constitutively expressed 8-fold higher l-threonine-sensitive aspartokinase I activity than KY8279. In addition, KY8366 constitutively expressed 13-fold higher l-lysine-sensitive aspartokinase III activity than KY8280. Such elevated levels of aspartokinases may contribute to the hyperproduction of l-threonine by these mutant strains. KY8366 produced 28 mg/ml of l-threonine in a culture medium fed with 12% glucose.  相似文献   

13.
Since l-prolyl diketopiperazines, l-prolyl-l-valine anhydride and l-leucyl-l-proline anhydride, had been isolated from the culture filtrate of Streptomyces sp. S-580, the mechanism of l-prolyl diketopiperazine formation by Streptomyces has been studied. These two l-prolyl diketopiperazines were not formed from their constituent amino acids incubated with intact cell or cell free homogenate of this strain in buffered salt solution containing energy source. However, from milk casein, poly peptone or gelatin, the former two were components of the culture medium of this strain, hydrolyzed with the pure streptomyces-protease, these l-prolyl diketopiperazines were obtained (only from gelatin, glycyl-l-proline anhydride were obtained in addition to these two). Furthermore, in hydrolysis of some synthetic l-prolyl peptides with this enzyme, l-prolyl diketopiperazine formation were also studied, and as the result, glycyl-l-proline anhydride was obtained from glycyl-l-prolyl-l-leucine but no l-prolyl diketopiperazine was formed from l-prolyl-l-leucyl-glycine. From these evidences, the possible route of l-prolyl diketopiperazine formation by Streptomyces has been discussed.  相似文献   

14.
l-Homoserine was prepared by the reduction of l-aspartic acid β-methyl ester with sodium borohydride in water solution without any racemization. The yield of l-homoserine was about 25% of the theoretical amount, and no product other than l-homoserine, l-aspartic acid and l-aspartic acid β-methyl ester was present in the reaction mixture. The low yield of l-homoserine was ascribed to the hydrolysis of the ester.

l-Azetidine-2-carboxylic acid could not be detected in the reaction mixture. In contrast with the reduction of l-glutamic acid γ-esters, the reduction of l-aspartic acid β-ester was not accompanied by the cyclization.  相似文献   

15.
Abstract

In an attempt to develop a novel biocatalyst able to efficiently catalyse the synthesis of non-natural amino acids, Escherichia coli TG1 was treated with 10 mM NaNO2 and then cultured in selective medium supplemented with 20 mM l-tert-leucine. Each culture was grown for 2 weeks and then subcultured into fresh medium with successive decreases of l-tert-leucine concentration at each transfer to a final value of 0.5 mM. The adapted cells resulting from this forced evolution procedure were able to grow in minimal medium with 0.1 mM l-tert-leucine as sole nitrogen source. Both HPLC and TLC verified progressive removal of l-tert-leucine from the medium during bacterial growth. Further studies revealed that the adapted cells metabolized l-tert-leucine by transamination, removing the amino group but leaving the carbon skeleton of the corresponding 2-oxoacid intact. Despite the mutagenesis, when the four obvious candidate amino acid aminotransferase genes were cloned and sequenced, there was no change in these structural genes. The activity of the adapted cells with l-tert-leucine is apparently attributable to the wild-type branched-chain amino acid aminotransferase (IlvAT), presumably expressed at higher levels as a result of a regulatory mutation. With the isolate I-4, the resting cells transaminate l-tert-leucine, l-norleucine, l-norvaline, γ-methyl-l-leucine and dl-homophenylalanine as effectively as does the crude extract. These evolved cells may be useful for synthesizing non-natural amino acids for the pharmaceutical industry. In addition, the adapted cells can also catalyse transamination of naturally occurring hydrophobic amino acids.  相似文献   

16.
l-Threonine production by strain BB-69, which was derived from Brevibacterium flavum No. 2247 as a α-amino-β-hydroxyvaleric acid resistant mutant and produced about 12 g/liter of l-threonine, was reduced by the addition of l-lysine or l-methionine in the culture medium. Many of lysine auxotrophs but not methionine auxotrophs derived from strain B–2, which produced about 7 g/liter of l-threonine, produced more l-threonine than the parental strain. Except only one methionine auxotroph (BBM–21), none of lysine and methionine auxotrophs derived from BB–69 produced more l-threonine than the parental strain. Homoserine dehydrogenase of crude extract from strain B–2 was inhibited by l-threonine more strongly than that from BB–69. Strain BBM–21, a methionine auxotroph derived from BB–69, produced about 18 g/liter of l-threonine, 50% more than BB–69, while accumulation of homoserine decreased remarkably as compared with BB–69. l-Threonine production by BBM–21 was increased by the addition of l-homoserine, a precursor of l-threonine, while that by BB–69 was not. No difference was found among BBM–21, BB–69 and No. 2247 in the degree of inhibition of homoserine kinase by l-threonine. l-Threonine production by revertants of BBM–21, that is, mutants which could grow without methionine, were all lower than that of BBM–21. Correlation between l-threonine production and methionine or lysine auxotrophy was discussed.  相似文献   

17.
The effects on the polymorphic crystallization of l-glutamic acid were examined of many substances including amino acids, inorganic salts, surface active agents, and sodium salt or hydrochloride of l-glutamic acid, when contained in the mother liquor.

The co-existence of amino acids, especially of l-aspartic acid, l-phenylalanine, l-tyrosine, l-lcucine and l-cystine contributed to the crystallization of l-glutamic acid in α-form, and these amino acid showed an inhibitory action on the transition of α-crystals as the solid phase in the aqueous solution, to β-crystals.

In the presence of a large amount of l-glutamate or the hydrochloride at the time of nucleation of l-glutamic acid, mostly β-crystals appeared even in the presence of the amino acids named above.  相似文献   

18.
The growth of Brevibacterium flavum No. 2247 was inhibited over 90% at a concentration above 1 mg/ml of α-amino-β-hydroxyvaleric acid, a threonine analogue, and the inhibition was reversed by the addition of l-threonine, and to lesser extent by l-leucine, l-isoleucine, l-valine and l-homoserine. l-Methionine stimulated the inhibition. Several mutants resistant to the analogue produced l-threonine in the growing cultures. The percentage of l-threonine producer in the resistant mutants depended on the concentration of the analogue, to which they were resistant. The best producer, strain B-183, was isolated from resistant strains selected on a medium containing 5 mg/ml of the analogue. Mutants resistant to 8 mg/ml of the analogue was derived from strain B-183 by the treatment with mutagen, N-methyl-N’-nitro-N-nitrosoguanidine. Among the mutants obtained, strain BB-82 produced 13.5 g/liter of l-threonine, 30% more than did the parental strain. Among the resistant mutants obtained from Corynebacterium acetoacidophilum No. 410, strain C-553 produced 6.1 g/liter of l-threonine. Several amino acids other than l-threonine were also accumulated, and these accumulations of amino acids were discussed from the view of regulation mechanism of l-threonine biosynthesis.  相似文献   

19.
Some strains of Pseudomonas was found capable of utilizing l-theanine or d-theanine as a sole nitrogen and carbon source. The cell-free extract catalyzes the hydrolysis of the amide group of the compounds and the hydrolase activity was influenced remarkably by the nitrogen source in the medium. l-Theanine and d-theanine were hydrolyzed to yield stoichiometrically l-glutamic acid and d-glutamic acid, respectively, and ethylamine, which were isolated from the reaction mixture and identified.

The theanine hydrolase of Pseudomonas aeruginosa was purified approximately 200-fold. It was shown that the activities of l-theanine hydrolase, d-theanine hydrolase and the heat-stable l-glutamine hydrolase and d-glutamine hydrolase are ascribed to a single enzyme, which may be regarded as a γ-glutamyltransferase from the point of view of the substrate specificity and the properties. This theanine hydrolase catalyzed the transfer of γ-glutamyl moiety of the substrates and glutathione to hydroxylamine. l-Glutamine and d-glutamine were hydrolyzed by the theanine hydrolase and also by the heat-labile enzyme of the same strain of Pseudomonas aeruginosa, whose properties resembled the common glutaminase.  相似文献   

20.
It has been found that although Brevibacterium lactofermentum No. 2256 is incapable of accumulating l-glutamic acid in a biotin sufficient medium, it produces a large quantity of the acid in the presence of sucrose fatty acid ester. In a biotin deficient medium, however, the ester brought the unfavorable diminution of l-glutamic acid accumulation caused by the decrease of glucose consumption in an incubation period. The undesirable effects were practically lost when the ester was added to the culture medium after more than eight hours in the course of incubation. This fact suggests that the ester is concerned with the growth of microorganism. It is very interesting to elucidate the interrelation between sucrose fatty acid ester and biotin. For the maximum accumulation of l-glutamic acid corresponding increase in amount of the ester to the increasing concentration of biotin was necessary. The proportional relation did not extend to excedingly high levels of the two implicating factors. The further observations concerning the effects of the individual fatty acid esters such as sucrose stearate remain unsatisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号