首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

2.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

3.
Regulatory properties of the enzymes involved in aromatic amino acid biosynthesis in the mutant of Corynebacterium glutamicum which produces a large amount of aromatic amino acids were examined. A phenylalanine auxotrophic l-tyrosine producer, pr-20, had a 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthetase released from the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a two-fold derepressed chorismate mutase. A pair of l-phenylalanine and l-tyrosine still strongly inhibited the chorismate mutase activity, though the enzyme was partially released from the inhibition by l-phenylalanine alone. A tyrosine auxotrophic l-phenylalanine producer, PFP-19-31, had a DAHP synthetase sensitive to the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a prephenate dehydratase and a chorismate mutase both partially released from the feedback inhibition by l-phenylalanine. The mutant produced a large amount of prephenate as well as l-phenylalanine. A phenylalanine and tyrosine double auxotrophic l-tryptophan producer, Px-115-97, had an anthranilate synthetase partially released from the feedback inhibition by l-tryptophan and had a DAHP synthetase sensitive to the feedback inhibition. These data explained the mechanism of the production of aromatic amino acids by these mutants and supported the in vivo functioning of the control mechanisms of aromatic amino acid biosynthesis in C. glutamicum previously elucidated in vitro experiments.  相似文献   

4.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

5.
Biosynthetic threonine deaminase was purified to an apparent homogeneous state from the cell extract of Proteus morganii, with an overall yield of 7.5%. The enzyme had a s020,w of 10.0 S, and the molecular weight was calculated to be approximately, 228,000. The molecular weight of a subunit of the enzyme was estimated to be 58,000 by sodium dodecyl sulfate gel electrophoresis. The enzyme seemed to have a tetrameric structure consisting of identical subunits. The enzyme had a marked yellow color with an absorption maximum at 415 nm and contained 2 mol of pyridoxal 5′-phosphate per mol. The threonine deaminase catalyzed the deamination of l-threonine, l-serine, l-cysteine and β-chloro-l-alanine. Km values for l-threonine and l-serine were 3.2 and 7.1 mm, respectively. The enzyme was not activated by AMP, ADP and ATP, but was inhibited by l-isoleucine. The Ki for l-isoleucine was 1.17 mm, and the inhibition was not recovered by l-valine. Treatment with mercuric chloride effectively protected the enzyme from inhibition by l-isoleucine.  相似文献   

6.
1. Some of 5-methyltrypotophan (5MT)-resistant mutants derived from glutamate-producing bacteria such as Brevibacterium flavum, Corynebacterium acetoglutamicum and Micrococcus glutamicus produced a small amount of l-tryptophan, while tyrosine and phenylalanine auxotrophs of B. flavum did not.

2. 5-MT-resistant mutant derived from the auxotroph for tyrosine and phenylalanine produced 390 mg/liter of l-tryptophan at most. A mutant resistant to a higher concentration of 5MT, which was derived from a tyrosine and phenylalanine auxotrophic mutant which was resistant to a low concentration of 5MT, produced 660 mg/liter of l-tryptophan. Using this mutant, the effects of the concentrations of components of the culture medium on the l-tryptophan production were examined. The high concentration of l-tyrosine, but not l-phenylalanine, inhibited the l-tryptophan production. Using the improved culture medium, this strain produced 1.9 g/liter of l-tryptophan.  相似文献   

7.
The biosynthetic origin of the amino acid moieties of enduracidin was investigated by feeding experiments with labeled compounds. Results of the incorporation and the distribution of radioactivity into the antibiotic revealed that glycine, l-serine, l-threonine, l-alanine, L-aspartic acid, l-ornithine and l-citrulline were incorporated into the corresponding amino acid moieties. Unique amino acids, enduracididine and its isomer with an imidazolidine ring, were derived from l-arginine, but not histidine. K1 (4-hydroxyphenylglycine) and K2 (3,5-dichloro-K1) moieties were derived from l-tyrosine. 36Cl-Sodium chloride was incorporated into the antibiotic in the early stage of fermentation.  相似文献   

8.
Ethionine-resistant mutants derived from Corynebacterium glutamicum KY 9276 (Thr?) were found to accumulate l-methionine in culture media. One of the mutants, ER-107-4, which produced 250 μg/ml of l-methionine was subjected to further mutagenesis to obtain better l-methionine producers. l-Methionine production increased stepwise by successive endowing such markers as selenomethionine, 1,2,4-triazole, trifluoromethionine and methionine hydroxamate resistance. Thus, a mutant multi-resistant to ethionine, selenomethionine and methionine hydroxamate, ESLMR-724, produced 2 mg/ml of l-methionine in a medium containing 10% glucose.

Increase of l-methionine production was accompanied by increased levels and reduced repressibility of methionine-forming enzymes. The levels of methionine enzymes in ESLMR-724 increased to 2.5~4.2 fold of those in KY9276, In addition, homoserine-O-trans-acetylase and cystathionine γ-synthase which were strongly repressed by l-methionine in KY 9276 were stimulated by exogenous l-methionine in ESLMR-724. Implications of these results were discussed in relation to the productivity of l-methionine and the regulation of l-methionine biosynthesis.  相似文献   

9.
The synthesis of a new series of Nα-benzyloxycarbonyl (Z)-amino acid and Z-dipeptide chloromethyl ketone derivatives is described. The new derivatives are as follows; Z-l-Leu-CH2Cl, Z-l-Phe (N02)-CH2Cl, Z-l-Tyr (Bzl)-CH2Cl, Z-l-Tyr (Z)-CH2Cl, Z-l-Tyr-CH2Cl, Z-l-Glu (Me)-CH2Cl, Z-l-Phe-l-Leu-CH2Cl, Z-l-Tyr-l-Leu-CH3Cl, Z-l-Leu-l-Phe-CH2Cl, Z-l-Leu-l-Tyr-CH2Cl, Z-l-G1U (Me)-l-Tyr-CH2Cl, Z-l-G1U (Me)-l-Phe-CH2Cl.  相似文献   

10.
d-Xylose isomerase requires manganese ions for its action, but l-arabinose isomerase has a less specific on metal requirement. l-Arabinose isomerase is activated by addition of Mn++ or Co++, less effectively by addition of Zn++, Ca++, Mg++, Sr++ or Cd++. Moreover, manganese and potassium ions for d-xylose isomerase, and manganese and cobaltous ions for l-arabinose isomerase were also shown to have protective effect on respective enzymes against thermal inactivation.  相似文献   

11.
The properties of the tyrosinase from Pseudomonas melanogenum was investigated with the crude enzyme preparation. Optimum temperature and pH of the enzyme were 23°C and 6.8, respectively. l-Tyrosine, d-tyrosine, m-tyrosine, N-acetyl-l-tyrosine and l-DOPA were utilized as a substrate by the enzyme. The value for Km obtained were as follows: l-tyrosine 6.90 × 10?4 m, d-tyrosine 1.43 ×10?3 m and l-DOPA 9.90 × 10?4 m. The enzyme was inhibited by chelating agents of Cu2+ l-cysteine, l-homocysteine, thiourea and diethyl-dithiocarbamate and the inhibition was completely reversed by the addition of excess Cu2+ From these results it is concluded that the enzyme is a copper-containing oxidase.  相似文献   

12.
A tyrosine auxotroph derived from a hydrocarbon utilizing bacterium, Corynebacterium sp. KY 4309, was found to accumulate a large amount of l-phenylalanine in the broth. The cultural conditions for l-phenylalanine production were studied. The pH value during cultivations exhibited a remakable effect on l-phenylalanine production. The addition of l-tryptophan enhanced the l-phenylalanine accumulation. Shikimic acid and phenylpyruvic acid are possible precursors of phenylalanine biosynthesis in this bacterium. Production of l-phenylalanine attained to a level of 10 mg per ml for 68 hr under optimal conditions.  相似文献   

13.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

14.
Homoserine dehydrogenases and aspartokinases in l-threonine- or l-threonine and l-lysine-producing mutants derived from Corynebacterium glutamicum KY 9159 (Met?) were studied with respect to the sensitivity to the inhibition by end products, l-threonine and l-lysine. The activities of homoserine dehydrogenases in the mutants which produced l-threonine or l-threonine and l-lysine were slightly less susceptible to the inhibition by l-threonine than the activity in the parent strain, KY 9159. The aspartokinases in the threonine-producing mutants, KY 10484 and KY 10230, which were resistant to α-amino-β-hydroxylvaleric acid (AHV, a threonine analog) and more sensitive to thialysine (a lysine analog) than the parent, were sensitive to the concerted feedback inhibition by l-lysine and l-threonine by about the same degree as KY 9159. The aspartokinase in an AHV- and thialysine-resistant mutant, KY 10440, which was derived from KY 10484 and produced about 14 mg/ml of l-threonine in a medium containing 10% glucose was less susceptible to the concerted feedback inhibition than KY 10484 or KY 9159, although the activity was still under the feedback control. In the parent strain, l-threonine activated aspartokinase activity in the absence of ammonium sulfate, an activator of the enzyme, but partially inhibited the activity in the presence of the salt. On the other hand, the enzyme of KY 10440 was activated by l-threonine either in the presence or in the absence of the salt. In another AHV- and thialysine-resistant mutant, KY 10251, which was derived from KY 10230 and produced both 9 mg/ml of l-threonine and 5/5 mg/ml of l-lysine, l-threonine and l-lysine simultaneously added hardly inhibited the activity of aspartokinase.

Implications of these results are discussed in relation to l-threonine or l-lysine production, AHV or thialysine resistance and regulation of l-threonine biosynthesis in these mutants.  相似文献   

15.
The present investigation is concerned with l-glutamic acid production in the presence of pyrrolidone carboxylic acid and glucose in Bacillus megaterium st. 6126. This strain does not grow on dl-pyrrolidone carboxylic acid (dl-PCA)1) as the sole source of carbon and nitrogen. The optimal concentration of yeast extract required for the maximal production of l-glutamic acid was 0.005% under the conditions used. As the yeast extract concentration was increased, growth increased proportionally; but the l-glutamic acid production did not exceed the control’s to which glucose and ammonium chloride had been added. l-Glutamic acid produced by both growing cultures and resting cells was derived from glucose and ammonium salt of dl-PCA. Isotope experiments suggested that the l-glutamic acid produced was partially derived from ammonium salt of dl-PCA in the growing culture which had been supplemented with d-glucose-U-14C or dl-PCA-1-14C and that ammonium salt of dl-PCA was consumed as the source of nitrogen and carbon for l-glutamic acid.  相似文献   

16.
l-Ng-Methylarginine, l-Ng,Ng-dimethylarginine and ethanolamine were isolated from basic amino acids fraction of broad bean (Vicia faba L.) seed. The presence of Ng,N′g-dimethylarginine was also suggested.  相似文献   

17.
Effect of oxygen tension on l-lysine, l-threonine and l-isoleucine accumulation was investigated. Sufficient supply of oxygen to satisfy the cell’s oxygen demand was essential for the maximum production in each fermentation. The dissolved oxygen level must be controlled at greater than 0.01 atm in every fermentation, and the optimum redox potentials of culture media were above ?170 mV in l-lysine and l-threonine and above ?180 mV in l-isoleucine fermentations. The maximum concentrations of the products were 45.5 mg/ml for l-lysine, 10.3 mg/ml for l-threonine and 15.1 mg/ml for l-isoleucine. The degree of the inhibition due to oxygen limitation was slight in the fermentative production of l-lysine, l-threonine and l-isoleucine, whose biosynthesis is initiated with l-aspartic acid, in contrast to the accumulation of l-proline, l-glutamine and l-arginine, which is biosynthesized by way of l-glutamic acid.  相似文献   

18.
Production of d-xylose and l-arabinose isomerases by lactic acid bacteria was greatly promoted by the addition of manganese ions in cultural medium. Effective concentration of the ions was 5 × 1O-3 m. Ferrous ions were also effective for the production of d-xylose isomerase and cobaltous ions were somewhat effective for the production of l-arabinose isomerase. Zinc and cadmium ions inhibited bacterial growth. It was possible to increase the production of isomerase by changing MnSO4 concentration to 5× 10-3 m (0.l1 %) in place of 0.001 per cent in the normal medium.

Column chromatographic procedures for the purification of pentose isomerases were carried out. Cation and anion exchange resins were not suitable because of their low exchange capacities and instability of the enzyme at acidic pH range. But the isomerases were successfully purified by DEAE-cellulose column chromatography with high recovery (85~90%). Using a Tris buffer, KCl concentration was increased in gradient. d-Xylose isomerase was eluted at pH 7.0 at 0~0.2 m KCl, and l-arabinose isomerase at pH 8.0 at 0~0.4 m KCl. The purified isomerases, d-xylose isomerase and l-arabinose isomerase, both required manganese ions specifically for their activities.

D-Xylose isomerase and l-arabinose isomerase are different enzymes which can be separated from each other with acetone fractionation at pH 4.8~5.0, heat treatment or chromatography on a colnmn of DEAE-cellulose. In DEAE-cellulose chromatography with a linear gradient elution method, d-xylose isomerase is recovered in the first peak at pH 7.0 (Tris bnffer) with 0~0.2 m KCl, and l-arabinose isomerase is eluted in the second peak at pH 8.0 (Tris buffer) with a larger ionic strength.  相似文献   

19.
Phenylalanine ammonia-lyase, which catalyzes the conversion of l-phenylalanine to trans-cinnamic acid and ammonia, has been partially purified from the cells of Rhodotorula. Some of the properties of this phenylalanine ammoyia-lyase were investigated. The enzyme was stable in phosphate buffer of pH over the range of 6.0 to 7.0 On heating, the enzyme was stable up to 50°C, but above 60°C, it was destroyed. The enzyme activity was strongly inhibited by p-chloromercuribenzoate at 10?5 m and almost recovered by the addition of glutathione or mercaptoethanol at 10?3 m. The present enzyme preparation of Rhodotorula also catalyzed the deamination of l-tyrosine to trans-p-coumaric acid. trans-p-Coumaric acid was isolated from the reaction mixture and identified by its absorption spectra. The rates of deamination showed optima at pH 9.0 and 9.5 for l-phenylalanine and l-tyrosine, respectively.  相似文献   

20.
Mutants resistant to α-amino-β-hydroxyvaleri0c acid (AHV) were derived from various bacteria which belong to Corynebacterium, Brevibacterium, Arthrobacter, Microbacterium, or Bacillus by mutational treatment with N-methyl-N′-nitro-N-nitrosoguanidine(NTG), and screened for their ability to produce l-threonine. A number of l-threonine producers were obtained from each group of bacteria. Among them, the mutants derived from C. glutamicum KY9159(Met?) were further mutagenized with NTG to derive thialysine(S-Lys)-resistant mutants. An AHV-resistant mutant, KY10484 was proved to be much more sensitive to the growth inhibition by thialysine than the parent strain, KY9159. From KY10484, a number of AHV- and thialysine-resistant mutants were derived. Approximately a half of these mutants were found to produce more l-threonine than KY10484. Among these mutants, KY10440 (Met?, AHVR, s-LysR) was used to investigate the cultural conditions for l-threonine production. The growth of KY10440 decreased largely with addition of l-homoserine, a threonine precursor. l-Asparagine, l-cystine, l-glutamine or l-arginine partially reversed the inhibitory effect of l-homoserine. Addition of these amino acids at low level led to increase l-threonine production. The amount of l-threonine accumulation reached to a level of 14mg/ml with a medium containing 10% glucose and to a level of 10 mg/ml with a medium containing 5% molasses (as glucose).

Another AHV- and thialysine-resistant mutant, KY10251 which was also derived from KY9159 was found to produce both 9 mg/ml of l-threonine and 5.5 mg/ml of l-lysine in a culture broth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号