首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Cell-free extracts of a streptomycin-bleached strain of Euglena gracilis var. bacillaris have been examined for enzyme systems primarily responsible for the oxidation of reduced pyridine nucelotides. NADH lipoyl dehydrogenase, NADH and NADPH oxidase, NADH and NADPH diaphorase, and NADH and NADPH cytochrome c reductase have been demonstrated. The NADPH-linked enzymes had lower activity rates and were less sensitive to N-ethyl maleimide and p-hydroxymercuribenzoate than their NADH-linked counterparts. NADH cytochrome c reductase was the most sensitive to antimycin A. Michaelis-Menten constants (Km) determined were as follows: NADH diaphorase, 350 μM; NADPH diaphorase, 200 μM; NADH cytochrome c reductase, 13 μM; NADPH cytochrome c reductase, 9 μM; NADH oxidase, 100 μM; NADPH oxidase 150 μM; NADH lipoyl dehydrogenase, 0.35 μM. Enzyme activities after storage at –5 C indicate that the diaphorases are less labile than the other tested enzymes, and the differential activities of the NADH and NADPH linked enzymes suggest that functionally they may have different roles.  相似文献   

2.
A primitive trichomonad, Monocercomonas sp. (strain NS-1:PRR) from Natrix sipedon, was grown axenically in Diamond's medium. Activity of NADH oxidase, malate dehydrogenase, malate dehydrogenase (decarboxylating) and of the anaerobic enzymes, pyruvate synthase and hydrogenase as well as of several hydrolases was demonstrated in homogenates. The subcellular distribution of these activities was studied by means of analytical differential and isopycnic centrifugation of homogenates prepared in 0.25 M sucrose. NADH oxidase and malate dehydrogenase are in the nonsedimentable part of the cytoplasm. Malate dehydrogenase (decarboxylating), pyruvate synthase, and hydrogenase are associated with a large particle which equilibrates at density 1.22. In its properties, this particle corresponds to the microbody-like hydrogenosomes of Tritrichomonas foetus. The 5 hydrolases studied are associated with at least 2 different particle populations: a large particle population equilibrating at densities from 1.10 to 1.16 is the exclusive location of 3 enzymes (β-galactosidase, protease and β-N-acetylglucosaminidase), 2 of which have a pH optimum close to neutrality. These particles contain part of the acid phosphatase and β-glucuronidase. Another part of these 2 enzymes is associated with a separate population of smaller granules with equilibrium densities of 1.16 to 1.18. The 2 types of hydrolase-carrying particles are also biochemically very similar to their counterparts in T. foetus.  相似文献   

3.
The biochemical effects of several newly induced low xanthine dehydrogenase (lxd) mutations in Drosophila melanogaster were investigated. When homozygous, all lxd alleles simultaneously interrupt each of the molybdoenzyme activities to approximately the same levels: xanthine dehydrogenase, 25%; aldehyde oxidase, 12%; pyridoxal oxidase, 0%; and sulfite oxidase, 2% as compared to the wild type. In order to evaluate potentially small complementation or dosage effects, mutant stains were made coisogenic for 3R. These enzymes require a molybdenum cofactor, and lxd cofactor levels are also reduced to less than 10% of the wild type. These low levels of molybdoenzyme activities and cofactor activity are maintained throughout development from late larval to adult stages. The lxd alleles exhibit a dosage-dependent effect on molybdoenzyme activities, indicating that these mutants are leaky for wild-type function. In addition, cofactor activity is dependent upon the number of lxd + genes present. The lxd mutation results in the production of more thermolabile XDH and AO enzyme activities, but this thermolability is not transferred with the cofactor to a reconstituted Neurospora molybdoenzyme. The lxd gene is localized to salivary region 68 A4-9, 0.1 map unit distal to the superoxide dismutase (Sod) gene.  相似文献   

4.
Transgenic Pssu-ipt tobacco with elevated content of endogenous cytokinins grown under in vitro conditions exhibited elevated activities of antioxidant enzymes (i.e. catalase, ascorbate peroxidase, guaiacol and syringaldazine peroxidase, glutathione reductase) and some of enzymes involved in anaplerotic pathways such as glucose-6-phosphate dehydrogenase, glycolate oxidase, NADP-malic enzyme, NADP-isocitrate dehydrogenase, and glutamate dehydrogenase compared to control non-transgenic SR1 tobacco. Higher activities of peroxidases, NADP-malic enzyme, and glutamate dehydrogenase were maintained in transgenic grafts after several weeks of the growth under ex vitro conditions, while transgenic rooted plants showed only the increase in activity of glycolate oxidase compared to control non-transformed tobacco. Total activities of superoxide dismutase were lower in both types of Pssu-ipt tobacco contrary to controls under both growth conditions. The presence of PR-1 protein and proteins with elevated activities of chitinase was proved in the extracellular fluid in both transgenic types under both in vitro and ex vitro conditions.  相似文献   

5.
Mitochondria from Orobanche were analysed for the activities of aconitate hydratase, isocitrate dehydrogenase, succinate dehydro-genase, fumarate hydratase, malate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases, glutamate dehydrogenase, aminotransferases, ATPase and “malic” enzyme. The specific activities of isocitrate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases and glutamate dehydrogenase in the mitochondria) fraction from parasite tissue compared favourably with those reported for most of the mitochondria from growing and storage tissues. Succinate dehydrogenase, fumarate hydratase and aspartate aminotransferase were of intermediate activity, while aconitate hydratase and malate dehydrogenase had rather low activity, and “malic” enzyme had very low activity in comparison with other preparations. The relevance of these findings in relation to mitochondrial metabolism in the parasite is discussed. No evidence was obtained to suggest any basic abnormality in the biochemical properties of the mitochondria from Orobanche centua which may be correlated with its obligatorily parasitic existence.  相似文献   

6.
The following enzyme activities were determined in the mitochondria of cucumber leaves (Cucumis sativus L. cv. Suisei No. 2) during ammonium toxicity: malate dehydrogenase, succinate dehydrogenase, glutamate dehydrogenase, cytochrome c oxidase, NADH diaphorase, NADH oxidase, succinate: cytochrome c oxidoreductase, NADH: cytochrome c oxidoreductase and adenosine triphosphatase. The activities of all enzymes except ATPase increased more or less during ammonium toxicity. Generally speaking the marked increase was found at 7 days treatment with 200 mg/1 NH3-N. The adenosine triphosphatase activity of injured plants was lower than that of normal plants through treatment. The addition of various organic acids (15 mM) to the culture solution contaning 200 mg/1 NH3-N (14.3 mM NH4Cl) suppressed the ammonium toxicity. The accumulation of free ammonia in the leaves was also repressed by the addition of organic acids. The results of present and previous reports suggest that the increase of respiratory metabolism due to ammonium toxicity is required for the supply of organic acids, specially δ-ketoglutaric acid, to counteract ammonia. Uncoupling in mitochondria resulting in the increase of respiration does not seem to occur during ammonium toxicity.  相似文献   

7.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

8.
The effect of derivatives of benzoic and cinnamic acids, quereetin,p-benzoquinone, and 2,5-dimethylbenzoquinone on oxygen consumption mitoehondrial suspensions and on the activity of some respiratory chain enzymes was studied. Benzoquinone and 2,5-dimethylbenzoquinone highly significantly inhibited the respiration and phosphorylation rates and malate- and succinate dehydrogenase activities. Chlorogenic acid, similarly as the quinones, very significantly inhibited the activities of the studied dehydrogenases but did not affect cytochrome oxidase. Oxygen consumption by intact mitochondria was not inhibited, only the oxidativo phosphorylation was significantly uncoupled. Quereetin significantly enhanced dehydrogenase activities and completely inhibited cytochrome oxidase activity. The respiration and phosphorylation activities of the mitochondria were significantly inhibited by quereetin. The effect of the other phenolic compounds studied on respiration and phosphorylation activities was not significant. Succinate dehydrogenase activity was the most affected enzyme among the respiratory chain enzymes. It was significantly inhibited by all the above phenolic compounds at 1-4M or 5 10-5M concentrations with the exception of gallic acid.  相似文献   

9.
Three microorganisms that degrade creatinine and contain sarcosine oxidase were isolated from soil and identified to be Alcaligenes denitrificans subsp. denitrificans J9 and Arthrobacter spp. J5 and J11. The three soil isolates degraded creatinine only via creatine by inducibly formed creatinine amidohydrolase, creatine amidinohydrolase, and sarcosine oxidase when cultivated with creatinine as the main nitrogen source. Sarcosine dehydrogenase, creatinine deiminase, and N-carbamoylsarcosine amidohydrolase were not induced by creatinine. Other microorganisms that degrade creatinine all contain sarcosine dehydrogenase as the enzyme for sarcosine oxidation, so these isolates seem to be unique in having sarcosine oxidase involved in their processes of creatinine degradation. Sarcosine oxidase was purified from A. denitrificans subsp. denitrificans J9 and partially characterized.  相似文献   

10.
Arsenite‐tolerant bacteria were isolated from an organic farm of Navsari Agricultural University (NAU), Gujarat, India (Latitude: 20°55′39.04″N; Longitude: 72°54′6.34″E). One of the isolates, NAU‐1 (aerobic, Gram‐positive, non‐motile, coccobacilli), was hyper‐tolerant to arsenite (AsIII, 23 mM) and arsenate (AsV, 180 mM). 16S rRNA gene of NAU‐1 was 99% similar to the 16S rRNA genes of Rhodococcus (Accession No. HQ659188). Assays confirmed the presence of membrane bound arsenite oxidase and cytoplasmic arsenate reductase in NAU‐1. Genes for arsenite transporters (arsB and ACR3(1)) and arsenite oxidase gene (aoxB) were confirmed by PCR. Arsenite oxidation and arsenite efflux genes help the bacteria to tolerate arsenite. Specific activities of antioxidant enzymes (catalase, ascorbate peroxidase, superoxide dismutase and glutathione S‐transferase) increased in dose‐dependent manner with arsenite, whereas glutathione reductase activity decreased with increase in AsIII concentration. Metabolic studies revealed that Rhodococcus NAU‐1 produces excess of gluconic and succinic acids, and also activities of glucose dehydrogenase, phosphoenol pyruvate carboxylase and isocitrate lyase were increased, to cope with the inhibited activities of glucose‐6‐phosphate dehydrogenase, pyruvate dehydrogenase and α‐ketoglutarate dehydrogenase enzymes respectively, in the presence of AsIII. Enzyme assays revealed the increase in direct oxidative and glyoxylate pathway in Rhodococcus NAU‐1 in the presence of AsIII.  相似文献   

11.
Summary An NADH dehydrogenase activity is induced together with xanthine dehydrogenase I in Aspergillus nidulans wild type strains. The two activities have the same mobility in polyacrylamide gels (Fig.1) and are immunologically indistinguishable (Fig.2). Several hxB mutants which lack xanthine dehydrogenase activity but conserve the associated NADH dehydrogenase activity were used to determine that uric acid, but not hypoxanthine, is an inducer of the enzyme (Figs. 3 and 4). This fact together with results reported previously (Scazzocchio and Darlington, 1968) indicate that the induction of xanthine dehydrogenase I and urate oxidase requires the product specified by the uaY gene, as well as the common effector, urie acid.Paper I of this series is Scazzocchio, Holl and Foguelman (1973).  相似文献   

12.
(1) The distributions of four oxidative enzymes were studied in crude brain fractions. (2) Freeze-thaw cycle treatment and frozen storage of homogenate fractions gave apparent enhancement of cytochrome oxidase and NADH cytochrome c reductase activities. (3) Deoxycholate released cytochrome oxidase and NADH cytochrome c reductase activities from low-speed precipitates. The NADH diaphorase was enhanced to a small degree while NADPH cytochrome c reductase was not affected by deoxycholate. (4) Distilled water coupled with a single homogenization released trapped soluble enzymes and mitochondria and gave nearly maximal cytochrome oxidase activity as judged by deoxycholate treatment. The total distilled water activity of NADH cytochrome c reductase was much less than that of deoxycholate-stimulated fractions. The activities of other enzymes were not markedly affected by distilled water although their distribution was changed.  相似文献   

13.
Abstract— The distributions of NADH2 dehydrogenase, NADH, cytochrome c reductase and cytochrome oxidase have been determined utilizing synaptosomal isolation techniques. Deoxycholate was used to determine compartmentation and/or ‘latency’ of these activities. NADPH, dehydrogenase proved to be a soluble and mitochondrial enzyme and the activity of this enzyme was not appreciably changed by deoxycholate treatment. NADHg cytochrome c reductase proved to be a mitochondrial enzyme with considerable activity in microsomal fractions. Deoxycholate treatment increased activity in the synaptosomal fraction 8.3-fold. A bimodal activation pattern was observed with synaptosomal and mitochondrial NADH, cyrochrome c reductase upon exposure to increasing concentrations of deoxycholate, with enhancement of activity at 0.25 % (w/v) and 0.50 % (w/v) deoxycholate. The enzyme was stable at concentrations of deoxycholate less than 0.25% (w/v) but was irreversibly inactivated at concentrations higher than 0.25% (w/v). The mechanism of this activation pattern appeared to be a combination of enzyme release and inactivation. Similar results were not observed in liver mitochondria. Cytochrome oxidase, a known mitochondrial marker, exhibited a 17-fold increase in synaptosomal activity with deoxycholate treatment. The synaptosomal cytochrome oxidase activity after deoxycholate treatment approached the activity in the free mitochondrial fraction. The percentage of mitochondrial protein in synaptosomal fractions was estimated to be about 30 per cent from a comparison of the respective total (deoxycholate-treated) activities. On the basis of these data we suggest that the synaptosomal fraction possesses a relatively sizable energy-producing potential which may be of significance in vivo.  相似文献   

14.
Xanthine dehydrogenase (EC 1.2.1.37) from mouse small intestine was accompanied by 20% as much xanthine oxidase (EC 1.2.3.2) activity (dehydrogenase-associated oxidase). NAD+ and oxygen did not compete as electron acceptors. Upon incubation at 37 °C, the dehydrogenase activity was gradually transformed to oxidase activity. Unexpectedly, the oxidase thus formed (dehydorgenase-derived oxidase) had catalytic properties different from those of the dehydrogenase-associated oxidase. The activation energy for the dehydrogenase-associated oxidase was 20,600 cal/mol, whereas that for the dehydrogenase-derived oxidase was 13,500 cal/mol. The activation energy for the dehydrogenase was 14,000 cal/mol. Between pH 6.4 and 8.5, the activity of the dehydrogenase-associated oxidase was essentially pH independent, whereas the activities of the dehydrogenase-derived oxidase and the dehydrogenase were enhanced with increasing pH. Use of the transformation inhibitor, dithiothreitol, and the protease inhibitor, diisopropylfluorophosphate, showed that these catalytic differences were not the result of partial proteolysis of the enzyme. The data demonstrate the existence of two catalytically different types of mammalian xanthine oxidase activities: A dehydrogenase-associated oxidase and a dehydrogenase-derived oxidase.  相似文献   

15.
Membrane-bound, pyrroloquinoline quinone-dependent, alcohol dehydrogenase functions as the primary dehydrogenase in the respiratory chain of acetic acid bacteria. In this study, an ability of the enzyme to directly react with ubiquinone was investigated in alcohol dehydrogenases purified from both Acetobacter aceti and Gluconobacter suboxydans by two different approaches. First, it was shown that the enzymes are able to reduce natural ubiquinones, ubiquinone-9 or -t0, in a detergent solution as well as a soluble short-chain homologue, ubiquinone-I. In order to show the reactivity of the enzyme with natural ubiquinone in a native membrane environment, furthermore, alcohol dehydrogenase was reconstituted into proteoliposomes together with natural ubiquinone and a terminal ubiquinol oxidase. The reconstitution was done by binding the detergent-free dehydrogenase at room temperature to proteoliposomes that had been prepared in advance from a ubiquinol oxidase and phospholipids containing ubiquinone by detergent dialysis using octyl-β-D-glucopyranoside; the enzyme of A. aceti was reconstituted together with ubiquinone-9 and A. aceti cytochrome a1 while G. suboxydans alcohol dehydrogenase was done into proteoliposomes containing ubiquinone-10 and G. suboxydans cytochrome o. The proteoliposomes thus reconstituted had a reasonable level of ethanol oxidase activity, the electron transfer reaction of which was also able to generate a ‘membrane potential. Thus, it has been shown that alcohol dehydrogenase of acetic acid bacteria donates electrons directly to ubiquinone in the cytoplasmic membranes and thus the ethanol oxidase respiratory chain of acetic acid bacteria is constituted of only three membranous respiratory components, alcohol dehydrogenase, ubiquinone, and terminal ubiquinol oxidase.  相似文献   

16.
Degradation of microbiodies in the methanolutilizing yeastCandida boidinii was mainly studies by electron microscopical observation. The yeast cells precultured on methanol medium contained five to six microbodies per section and showed high activities of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase. When the precultured cells were transferred into an ethanol medium the number of microbodies and concomitantly the activities of alcohol oxidase and catalase decreased. After 6 h of cultivation microbodies were hardly detected. Also the activity of alcohol oxidase was not measurable and catalase activity was reduced to one tenth, whereas the activities of formaldehyde dehydrogenase and formate dehydrogenase decreased only to about 70%. Experiments with methanol-grown cells transferred into an ethanol medium without nitrogen source indicated that the inactivation of alcohol oxidase and catalase does not require protein synthesis. However, the reappearance of these enzymes is presumably due to de novo protein synthesis as shown by experiments with cycloheximide.  相似文献   

17.
Variants of the enzyme aldehyde oxidase in Drosophila melanogaster are described. In addition to electrophoretic variants, a mutant that causes low levels of the enzyme has been found by screening more than 80 strains for aldehyde oxidase levels. The locus of the mutation maps on the third chromosome near lpo and aldox. The existence of the ry, lpo, and aldox mutants and of the new mutant indicates that xanthine dehydrogenase, pyridoxal oxidase, and aldehyde oxidase are under a separate genetic control, in addition to a common genetic control by ma-l and lxd. The genetic separation is shown to be accompanied by physical separation of the enzymes with DEAE-cellulose column chromatography and (NH 4)2SO4fractionation. Further data on the metabolism of aldehydes by xanthine dehydrogenase and aldehyde oxidase are presented. Although xanthine dehydrogenase requires NAD or a similar cofactor to metabolize purine and pteridine substrates, aldehyde oxidase oxidizes salicylaldehyde to salicylic acid without dissociable cofactors and with the uptake of oxygen.This work was supported in part by Research Grant GM-08202, by a Predoctoral Fellowship (J.C.) and a Genetics Training Grant (J.C. and E.D.), and by a Research Career Development Award (E.G.), all from the National Institutes of Health. Part of this work was submitted by J.C. to the University of North Carolina at Chapel Hill in partial fulfillment of the degree of Doctor of Philosophy.  相似文献   

18.
Summary Mutations at the cin gene display drastically lowered levels of the molybdoenzymes, xanthine dehydrogenase (XDH) and aldehyde oxidase (AO), and lack pyridoxal oxidase (PO) and sulfite oxidase (SO) activities. Certain mutations at cin also display varying degrees of female sterility, which is maternally affected. Here we characterize five new cin alleles with respect to the molybdoenzyme activities as well as the molybdenum cofactor, commonly required for molybdoenzyme activity. In complementing cin heterozygotes we find that, in addition to the previously reported unusually high levels of XDH and AO activities, there are unusually elevated levels of SO activity, as well as complementation for PO activity. The levels of immunologically crossreacting material in such heterozygotes indicate that the elevated levels of molybdoenzyme activities cannot be due to increases in the number of enzyme molecules. Measurements of the level of molybdenum cofactor activity normally present in XDH, AO, PO, and SO point to the possibility that a larger fraction of the enzyme molecules are active in these heterozygotes. The possible role of SO with respect to cinnamon's female sterility is also discussed.  相似文献   

19.
The function of type II NADH dehydrogenase (NDH-2) in Gram-positive Corynebacterium glutamicum was investigated by preparing strains with ndh, the NDH-2 gene, disrupted and over-expressed. Although disruption showed no growth defects on glucose minimum medium, the growth rate of the over-expressed strain was lower compared with its parent, C. glutamicum KY9714. Ndh-disruption and over-expression did not lead to a large change in the respiratory chain and energetics, including the cytochrome components and the H+/O ratio. However, in the strain that lacked NDH-2, membrane l-lactate oxidase activity increased, while NDH-2 over-expression led to decreased l-lactate and malate oxidase activities. In addition, relatively high cytoplasmic lactate dehydrogenase (LDH) activity was always present as was malate dehydrogenase, irrespective of NDH-2 level. Furthermore, l-lactate or malate-dependent NADH oxidase activity could be reproduced by reconstitution with the membranes and the cytoplasmic fraction isolated from the disruptant. These results suggest that coupling of LDH and the membrane l-lactate oxidase system, together with the malate-dependent NADH oxidase system, operates to oxidize NADH when the NDH-2 function is defective in C. glutamicum.  相似文献   

20.
The activities of four mitochondrial enzymes were studied in four stages of ripening tomato fruit. The highest enzyme activity was recorded for malate dehydrogenase followed by cytochrome c oxidase. Succinate dehydrogenase and NADH oxidase levels were low and could only be determined in the green stage of the fruit. However, peaks of various enzyme activities coincided in identical mitochondrial fractions on the sucrose density gradient. Moreover, the levels of malate dehydrogenase and cytochrome c oxidase were constant during the ripening process while the other two enzymes, succinate dehydrogenase and NADH oxidase, declined. This might indicate that mitochondria retain some of their essential functions through the ripening process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号