首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

2.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

3.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

4.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

5.
The acceptor specificity of amylomaltase from Escherichia coli IFO 3806 was investigated using various sugars and sugar alcohols. d-Mannose, d-glucosamine, N-acetyl- d-glucosamine, d-xylose, d- allose, isomaltose, and cellobiose were efficient acceptors in the transglycosylation reaction of this enzyme. It was shown by chemical and enzymic methods that this enzyme could transfer glycosyl residues only to the C4-hydroxyl groups of d-mannose, iY-acetyl- d-glucosamine, d-allose, and d-xylose, producing oligosaccharides terminated by 4–0-α-d-glucopyranosyl-d-mannose, 4–0-α-d-glucopyranosyl-yV-acetyl-d-glucosamine, 4-O-α-d-glucopyranosyl-d-allose, and 4–0-α-d-gluco- pyranosyl-d-xylose at the reducing ends, respectively.  相似文献   

6.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

7.
The transglucosylation reaction of buckwheat α-glucosidase was examined under the coexistence of 2-deoxy-d-glucose and maltose. As the transglucosylation products, two kinds of new disaccharide were chromatographically isolated in a crystalline form (hemihydrate). It was confirmed that these disaccharides were 3-O-α-d-glucopyranosyl-2-deoxy-d-glucose ([α]d + 132°, mp 130 ~ 132°C, mp of ±-heptaacetate 151 ~ 152°C) and 4-O-±-d-glucopyranosyl-2-deoxy-d-glucose ([±]d + 136°, mp 168 ~ 170°C), respectively. The principal product formed in the enzyme reaction was 3-O-±-d-glucopyranosyl-2-deoxy-d-glucose.  相似文献   

8.
The synthesis of 7-deoxy-d-glycero-d-gluco-heptose (1) from 3,5-O-benzylidene-1,2-O-isopropylidene-α-d-glucofuranose (2) is described. Oxidation of compound (2) afforded 3,5-O-benzylidene-1,2-O-isopropylidene-α-d-gluco-hexodialdo-1,4-furanose (3), which was then treated with methylmagnesium iodide to give 3,5-O-benzylidene-1,2-O-isopropylidene-7-deoxy-α-d-glycero-d-gluco-heptose (4) and its l-glycero-d-gluco isomer (5). Hydrolysis of (4) produced compound (1), which was identical with natural SF-666 A, a fermentation product of Streptomyces setonensis nov. sp.  相似文献   

9.
A xyloglucan (MBXG) from the cell walls of etiolated mung bean hypocotyls was characterized by analyzing the fragment oligosaccharides from controlled degradation products of the polymer with acid and enzyme.

Cellobiose, cellotriose and cellotetraose were isolated from the partial acid hydrolyzate of MBXG. Isoprimeverose (6-O-α-d-xylopyranosyl-d-glucopyranose) and a pentasaccharide, α-l-fucosyl-(1 → 2)-β-d-galactosyl-(1 → 2)-α-d-xylosyl-(1 → 6)-β-d-glucosyl-(1 → 4)-d-glucose, were isolated from the hydrolyzate of MBXG with an Asp. oryzae enzyme preparation.  相似文献   

10.
Deoxy derivatives of p-nitrophenyl (PNP) α-d-mannopyranoside, PNP 2-deoxy-α-d-arabino-hexopyranoside, 3-deoxy-α-d-arabino-hexopyranoside, 4-deoxy-α-d-lyxo-hexopyranoside, and α-d-rhamnopyranoside, were synthesized and hydrolytic activities of jack bean and almond α-mannosidases against them were investigated. These α-mannosidases scarcely acted on the 2-, 3-, and 4-deoxy derivatives, while the 6-deoxy one was hydrolyzed by the enzymes as fast as PNP α-d-mannopyranoside, which is a common substrate for α-mannosidase. These results indicate that the hydroxyl groups at C-2, 3, and 4 of the mannopyranoside are necessary to be recognized as a substrate by these enzymes, while that at C-6 does not have so a crucial role in substrate discrimination. Values of Km and Vmax of the enzymes on the hydrolysis of PNP α-d-rhamnopyranoside were obtained from kinetic studies.  相似文献   

11.
N-Acetyl-6-O-phosphono-muramoyl-l-alanyl-d-isoglutamine methyl ester and a variety of its 1-α-O-acyl derivatives were synthesized from benzyl 2-acetamido-2-deoxy-3-O-[d-1-(methoxycar-bonyl)ethyl]-β-d-glucopyranoside. Their immunoadjuvant activity in guinea-pigs was examined.  相似文献   

12.
This paper deals with the partial correction of our previous paper and with some new results in regard to ammonolysis of the epoxide ring of 2,3-anhydroribofuranoside derivatives.

Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside, prepared from d-xylose, with ammonia gave methyl 2-amino-2,5-dideoxy-α-d-arabinoside and no methyl 3-amino-3,5-dideoxy-α-d-xyloside which we reported to obtain previously.

The exclusive attack of the nucleophilic reagent at C-2 is inconsistent with a result of C. D. Anderson et al. in regard to ammonolysis of methyl 2,3-anhydro-α-d-ribofuranoside.

In contrast to α-anomer, methyl 2,3-anhydro-5-deoxy-β-d-ribofuranoside gave mainly methyl 3-amino-3,5-dideoxy-β-d-xyloside. The difference of ammonolysis products between α- and β-anomer will be due to existence of steric hindrance.  相似文献   

13.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

14.
The glucomannan isolated from larch holocellulose was hydrolyzed by a purified endo-d-β-mannanase. The products were fractionated by gel filtration on a Polyacrylamide gel in water and partition chromatography on ion exchange resins in 80% ethanol. The following oligosaccharides were isolated and identified: (a) 4-O-β-d-Manp-d-Man, (b) 4-O-β-d-Glcp-d-Man, (c) 4-O-β-d-Glcp-d-Glc, (d) O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man, (e) O-β-dGlcp-(l →4)-O-β-d-Manp-(l →4)-d-Man, (f) O-β-d-Manp-(l →4)-Oβ-d-Glcp-(l →4)-d-Man, (g) O-β-d-Manp-(l →4)-O-[α-d-Galp-(l →6)]-d-Man, (h) O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-d-Man, and (i) O-β-d-Glcp-(1 →4)-O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man.  相似文献   

15.
A trisaccharide consisting of two d-xylose units and one l-arabinose unit, and a tetrasaccharide consisting of three d-xylose units and one l-arabinose unit were isolated from the hydrolyzate of rice-straw arabinoxylan by the xylanase I produced by Asp. niger.

The structures of the trisaccharide and the tetrasaccharide were determined to be 31-α-l-arabinofuranosylxylobiose ([α]d? 80°) and 31-α-l-arabinofuranosylxylotriose ([α]d? 84°), respectively, by chemical and enzymic methods.

According to the structures of two arabinose-xylose mixed oligosaccharides, it was shown that the rice-straw arabinoxylan is composed of chain of 1,4-linked βd-xylopyranose residues and some of xylose residues have side-chain of 1,3-linked α-l-arabinofuranose.  相似文献   

16.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

17.
Several glycolipids were isolated from Spirulina maxima, an edible blue-green algae, by systematic fractionation with different solvents. Structural investigation by using methylation, GC-MS, and enzymic techniques indicated that the major glycolipids are O-β-d-galactosyl-(1→l′)-2′, 3′-di-O-acyl-d-glycerol, O-α-d-galactosyl-(l-→6)-O-β-d-galactosyl-(1→l′)-2′,3′-di-O-acyl-d-glycerol and 6-sulfo-O-α-quinovosyl-(l→l′)-2′, 3′-di-O-acyl-d-glycerol. Main fatty acid components of these glycolipids were identified as palmitic acid and linoleic or linolenic acid. Based on-these fatty acid compositions, Spirulina glycolipids were compared with those in higher plants.  相似文献   

18.
Methyl 2,5-di-O-p-nitrobenzoyl-β-d-ribofuranoside was prepared via methyl 2,3-O-ethoxyethylidene-β-d-ribofuranoside from d-ribose. It was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-(2′,4′-dinitroanilino)-α-d-glucopyranosyl bromide and 3,4-di-O-acetyl-2,6-dideoxy-2-(2′,4′-dinitroanilino)-6-phthalimido-α-d-glucopyranosyl bromide by a modified Königs-Knorr reaction to give neobiosamine analogs. The condensation reaction gave α-glucosides as the minor product, and the corresponding β-glucoside as the major product.  相似文献   

19.
The acylated, amidated and esterified derivatives of N-acetylglucosaminyl-α(1 → 4)-N-acetylmuramyl tri- and tetrapeptide were synthesized and examined as to their protective effect on pseudomonal infection in the mouse and pyrogenicity in the rabbit. Modifications of the terminal end function of the peptide moieties in their molecules caused enhancement of resistance to pseudomonal infection and reduction of pyrogenicity. Among the compounds tested, sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide and sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide-(l)-d-alanine were found to be advantageous and conceivably worthwhile for further investigation as immunobiologically active compounds.  相似文献   

20.
Hepta-O-acetyl-2-0-β-l-quinovopyranosyl-α-d-glucose (VI) and hepta-O-acetyl-2-O-α-l-quinovopyranosyl-β-d-gIucose (VIII) were prepared by the coupling of 2,3,4-tri-O-acetyl-α-l-quinovopyranosyl bromide (IV) with l,3,4,6-tetra-O-acetyl-α-D-glucose (V) in the presence of mercuric cyanide and mercuric bromide in absolute acetonitrile.

Similarly, hepta-O-acetyW-O-α-l-quinovopyranosyl-α-d-galactose (X) and hepta-O-acetyl-2-O-β-L-quinovopyranosyl-α-d-galactose (XI) were prepared by the reaction of IV with 1,3,4,6-tetra-O-acetyl-α-d-galactose (IX).

Removal of the protecting groups of VI, VIII, X and XI afforded the corresponding disaccharides. On treatment with hydrogen bromide, VI, VIII, X and XI gave the corresponding acetobromo derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号