首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An F1-ATPase-defective mutant, TBLA-1, was constructed by the transduction of a defective gene for the a subunit of F1-ATPase, atpA401, into Escherichia coli W1485lip2, a lipoic acid-requiring pyruvic acid producer. The pyruvic acid production of the strain TBLA-1 was found to be improved markedly compared with that of strain W1485lip2. In cultures using a jar fermentor, the strain W1485lip2 consumed 50 g/liter of glucose and produced 25 g/liter of pyruvic acid after culture for 32 h, while strain TBLA-1 consumed the same amount of glucose, and produced more than 30 g/liter of pyruvic acid in a 24-h culture. A revertant, No. 63–1, derived from the strain TBLA-1, had a normal level of F1-ATPase activity, and showed a similar pattern of pyruvic acid production to that of strain W1485lip2.  相似文献   

2.
A new process for tryptophan production was established using a lipoic acid auxotrophic mutant, Enterobacter aerogenes l-12, which has both pyruvic acid productivity and tryptophanase activity. The process consists of the production of pyruvic acid from glucose by the washed cells and the subsequent conversion of the acid to tryptophan by the tryptophanase itself in the presence of indole and NH4C1.

To prepare washed cells of which the tryptophanase activity and the pyruvic acid productivity were both high, it was best to culture the strain in a medium containing 1 % Polypepton, 0.2 % glucose, 3 μg/1 dl-lipoic acid, 0.05 % l-tryptophan, and mineral salts. The optimum composition of the reaction mixture for the pyruvic acid production by the washed cells was established. Under these conditions, 17 g/1 of pyruvic acid was accumulated from 5 % glucose after 36 hr of incubation. Thus, the conversion of the pyruvic acid to tryptophan was done by adding indole, NH4C1, pyridoxal-5′-phosphate, Triton X-100, and KOH to adjust the pH to 9.0 to the above reaction mixture. As a result, the pyruvic acid was rapidly converted to tryptophan, and the concentration of 14 g/1 was obtained after 36 hr (total 72 hr).  相似文献   

3.
The gene encoding malate dehydrogenase (MDH) was overexpressed in a pflB ldhA double mutant of Escherichia coli, NZN111, for succinic acid production. With MDH overexpression, NZN111/pTrc99A-mdh restored the ability to metabolize glucose anaerobically and 0.55 g/L of succinic acid was produced from 3 g/L of glucose in shake flask culture. When supplied with 10 g/L of sodium bicarbonate (NaHCO3), the succinic acid yield of NZN111/pTrc99A-mdh reached 1.14 mol/mol glucose. Supply of NaHCO3 also improved succinic acid production by the control strain, NZN111/pTrc99A. Measurement of key enzymes activities revealed that phosphoenolpyruvate (PEP) carboxykinase and PEP carboxylase in addition to MDH played important roles. Two-stage culture of NZN111/pTrc99A-mdh was carried out in a 5-L bioreactor and 12.2 g/L of succinic acid were produced from 15.6 g/L of glucose. Fed-batch culture was also performed, and the succinic acid concentration reached 31.9 g/L with a yield of 1.19 mol/mol glucose.  相似文献   

4.
Fermentation and succinic acid production by Actinobacillus succinogenes YZ0819 was inhibited by high NaCl. To enhance the resistance of this strain to osmotic stress, an NaCl-tolerant mutant strain of A. succinogenes (CH050) was screened and selected through a continuous culture using survival in 0.7 M NaCl as the selection criterion. Using Na2CO3 as the pH regulator and glucose as the carbon source in batch fermentation, the isolated osmo-resistant stain, A. succinogenes CH050, produced up to 66 g/l succinic acid with a yield of 73.37% (w/w). The concentration of succinic acid and mass yield were increased by 37.5 and 4.37%, respectively, compared to the parent strain. The dry cell weight reached 10.1 g/l, which is 37% higher than that of the parent strain. The high tolerance of A. succinogenes CH050 to osmotic stress increased improved the succinic acid production from batch fermentation.  相似文献   

5.
Escherichia coli strain NZN111, a pflB and ldhA double mutant of E. coli W1485, is considered a candidate of succinic acid producer. However, it is reported that this strain fails to ferment glucose anaerobically. In this study, it was demonstrated that when a gluconeogenic carbon source was used to replace glucose in aerobic culture, the NZN111 cells restored the ability to ferment glucose in the subsequent anaerobic culture with succinic acid as the major product even though no further genetic manipulation had been carried out. Activities of enzymes including phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, isocitrate lyase, malate dehydrogenase, malic enzyme, and pyruvate kinase in the NZN111 cells aerobically grown on different carbon sources were measured, and enhanced anaplerotic and oxaloacetate-reducing activities were revealed. Furthermore, supply of MgCO3 or NaHCO3 greatly improved succinate production by the malate-grown NZN111 cells. At the same time, pyruvic acid production was significantly reduced. When the malate-grown cells were anaerobically cultured in a salt medium with high pH buffering capacity, succinic acid was produced at a specific productivity of 308 mg/(g DCW h) with a molar yield of 1.31 mol succinic acid/mol glucose.  相似文献   

6.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

7.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

8.
A lipoic acid auxotroph of Escherichia coli K-12, strain W1485lip2 (ATCC25645), produced pyruvic acid aerobically from glucose under the lipoic acid-deficient conditions, while the prototrophic parent strain, W1485 (ATCC12435), produced 2-oxoglutaric acid aas the main product. The mechanism of the pyruvic acid production by strain W1485lip2 was found to be the impaired oxidative decarboxylation of pyruvic acid caused by the decrease in the activity of pyruvate dehydrogenase complex under the conditions of lipoic acid deficiency. Under the optimum culture conditions using the pH-controlled jar fermentor, 25.5 g/l pyruvic acid was obtained from 50 g/l glucose after the culture for 32–40 h at pH6.0. The relationship between the pyruvic acid productivity and the pyruvate dehydrogenase complex activity in jar-fermentor culture was discussed.  相似文献   

9.
A Corynebacterium glutamicum strain (ΔldhA-pCRA717) that overexpresses the pyc gene encoding pyruvate carboxylase while simultaneously exhibiting a disrupted ldhA gene encoding l-lactate dehydrogenase was investigated in detail for succinic acid production. Succinic acid was shown to be efficiently produced at high-cell density under oxygen deprivation with intermittent addition of sodium bicarbonate and glucose. Succinic acid concentration reached 1.24 M (146 g l−1) within 46 h. The yields of succinic acid and acetic acid from glucose were 1.40 mol mol−1 (0.92 g g−1) and 0.29 mol mol−1 (0.10 g g−1), respectively. The succinic acid production rate and yield depended on medium bicarbonate concentration rather than glucose concentration. Consumption of bicarbonate accompanied with succinic acid production implied that added bicarbonate was used for succinic acid synthesis.  相似文献   

10.
Conditions for tryptophan synthesis from pyruvic acid, indole and NH4Cl by Enterobacter aerogenes AHU 1540 having a high tryptophanase activity, were investigated using a reaction mixture containing 1.7% of pyruvic acid. Under optimum conditions, 16.4g/liter of tryptophan was accumulated after 24 hr of incubation.

Agaricus campestris AHU 9382 produced pyruvic acid in amounts of 22 ~ 26.5 g/liter from 5% of glucose after 3-days shaking culture. When E. aerogenes was added to this fermentation broth together with indole and NH4Cl, pyruvic acid produced was rapidly converted to tryptophan and yields of tryptophan as high as 15 g/liter were obtained after 12 hr of incubation. Furthermore, pyruvic acid fermentation by Saccharomyces exiguus AHU 3110 or Corynebacterium sp. 37-3A could also be used as a pyruvic acid source for subsequent tryptophan production.  相似文献   

11.
Escherichia coli strains with foreign genes under the isopropyl-β-d-thiogalactopyranoside-inducible promoters such as lac, tac, and trc were engineered and considered as the promising succinic acid-producing bacteria in many reports. The promoters mentioned above could also be induced by lactose, which had not been attempted for succinic acid production before. Here, the efficient utilization of lactose as inducer was demonstrated in cultures of the ptsG, ldhA, and pflB mutant strain DC1515 with ppc overexpression. A fermentative process for succinic acid production at high level by this strain was developed. In flask anaerobic culture, 14.86 g l−1 succinic acid was produced from 15 g l−1 glucose with a yield of 1.51 mol mol−1 glucose. In two-stage culture carried out in a 3-l bioreactor, the overall yield and concentration of succinic acid reached to 1.67 mol mol−1 glucose and 99.7 g l−1, respectively, with a productivity of 1.7 g l−1 h−1 in the anaerobic stage. The efficient utilization of lactose as inducer made recombinant E. coli a more capable strain for succinic acid production at large scale.  相似文献   

12.
Zusammenfassung Von 78 verschiedenen Stämmen der Gattungen Pediococcus, Leuconostoc und Lactobacillus vermochten vier Stämme der Species L. plantarum und ein Stamm von L. brevis Weinsäure umzusetzen. Bei beiden Organismen ist das Weinsäure abbauende Enzymsystem induzierbar. Die Induktion wird bei L. plantarum durch Glucose, nicht aber durch das ebenfalls vergärbare Mannit gehemmt. Mit ruhenden Zellen und zellfreien Extrakten wurden die Endprodukte des anaeroben Weinsäureabbaus bestimmt. Infolge der Instabilität der Enzyme konnte nur mit Rohextrakten gearbeitet werden. Je Mol Weinsäure werden von L. plantarum 1,5 Mol CO2, 0,5 Mol Essigsäure und 0,5 Mol d,l-Milchsäure, von L. brevis 1,33 Mol CO2, 0,67 Mol Essigsäure und ca. 0,3 Mol Bernsteinsäure gebildet. Oxalessigsäure wurde bei beiden Organismen als Zwischenprodukt nachgewiesen. Die Umsetzung von Weinsäure durch zellfreie Rohextrakte wird durch NAD oder NADH2 gefördert; ein Überschuß von NADH2 verhindert oder verringert die CO2-Entwicklung und führt zur vermehrten Bildung von Milchsäure oder Bernsteinsäure. Zum Nachweis des Abbauweges wurde eine Reihe von möglichen Zwischenprodukten untersucht. Danach ergibt sich für den Abbau der Weinsäure durch das homofermentative Milchsäurebakterium L. plantarum folgender Reaktionsverlauf: Nach Dehydratisierung von Weinsäure zu Oxalessigsäure (Weinsäure-Dehydratase) wird diese quantitativ zu Brenztraubensäure decarboxyliert (Oxalessigsäure-Decarboxylase). Die Hälfte der Brenztraubensäure wird — wahrscheinlich durch das Pyruvat-Dehydrogenase-System — zu CO2 und Essigsäure oxydiert, die andere Hälfte der Brenztraubensäure wird zu Milchsäure (Lactat-Dehydrogenase) reduziert. Der Weinsäureabbau durch den heterofermentativen L. brevis zeigt folgenden Reaktionsverlauf: Die durch Dehydratisierung entstandene Oxalessigsäure wird zu zwei Drittel zu Pyruvat decarboxyliert (spontan oder Oxalessigsäure-Decarboxylase). Pyruvat wird quantitativ zu Essigsäure und CO2 oxydiert. Das restliche Drittel Oxalessigsäure wird über Äpfelsäure, Fumarsäure zu Bernsteinsäure reduziert. Das Weinsäure abbauende System des homofermentativen Stammes (L. plantarum) unterscheidet sich im Reaktionsablauf, in der Sauerstoffempfindlichkeit, der Einwirkung von 2-Mercapto-äthanol, dem Einfluß von Glucose, der Stereospezifität und dem pH-Optimum der zellfreien Extrakte von demjenigen des heterofermentativen L. brevis.
Decomposition of tartrate by lactobacilli
Summary The decomposition of tartrate was only observed in four strains of Lactobacillus plantarum and one strain of L. brevis among 78 different strains of lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus. The enzyme decomposing tartrate is inducible in both organisms. In L. plantarum the induction is prevented by glucose but not by mannitol. The endproducts of the anaerobic metabolism of one mol of tartrate were 1.5 mol CO2, 0.5 mol acetic and 0.5 mol lactic acid with L. plantarum and 1.33 mol CO2, 0.67 mol acetic acid and 0.3 mol succinic acid with L. brevis when resting cells or cell free extracts were used. As the enzymes were very unstable, no substantial purification could be achieved; dialysis, gel chromatography or precipitation with ammonium sulphate led to rapid inactivation. Therefore crude extracts had to be used for the investigation of the enzymatic mechanism. NAD or NADH2 are essential for the decomposition of tartrate. However, a large surplus of NADH2 reduces or prevents the production of CO2 by cell free extracts and results in an increased formation of lactic or succinic acid, depending on the organism. Oxalacetic acid could be proven to be an intermediate metabolite. Using possible intermediates of the pathway of tartrate decomposition, the following sequences of reactions were demonstrated. In the homofermentative lactic acid bacterium L. plantarum tartrate is converted to oxalacetic acid (by tartrate dehydrase) which is decarboxylated to pyruvic acid (by oxalacetic decarboxylase). Half of the pyruvate is oxidised to CO2 and acetic acid (probably by the pyruvic-dehydrogenase-system), the other half of pyruvic acid is reduced to lactic acid (by lactate dehydrogenase). In the heterofermentative L. brevis tartrate is also converted to oxalacetic acid, but only two thirds of the oxalacetic acid are decarboxylated to pyruvic acid (spontaneously or by oxalacetic decarboxylase), the remaining third of oxalacetic acid is reduced to succinic acid via malic and fumaric acids. Pyruvic acid is completely oxidised to acetic acid and CO2. — The tartrate decomposing systems of the homofermentative strain (L. plantarum) and the heterofermentative strain (L. brevis) differ in the metabolic pathway, the inactivation by oxygen, the effect of 2-mercaptoethanol, the influence of glucose, the stereospecifity, and the pH-optimum.
  相似文献   

13.
Aims: To investigate the impact of acetaldehyde‐ and pyruvic acid‐bound sulphur dioxide on wine lactic acid bacteria (LAB). Methods and Results: Growth studies were performed where Oenococcus oeni, Pediococcus parvulus, Ped. damnosus and Lactobacillus hilgardii were inoculated into media containing various concentrations of acetaldehyde or pyruvic acid and an equimolar concentration of SO2 at pH 3·50 and 3·70. Low concentrations of acetaldehyde‐ and pyruvic acid‐bound SO2 were inhibitory to the growth of all bacteria although acetaldehyde‐bound SO2 was generally more inhibitory than pyruvic acid‐bound SO2. Inhibition was greater at pH 3·50 than 3·70, and Lact. hilgardii was the most sensitive to acetaldehyde‐bound SO2, while O. oeni was the most sensitive to pyruvic acid‐bound SO2. Degradation of SO2‐bound acetaldehyde was observed for all LAB, and aside from O. oeni, there was also complete degradation of SO2‐bound pyruvic acid at both pH values. O. oeni only degraded pyruvic acid at pH 3·70. Degradation of SO2‐bound acetaldehyde or pyruvic acid did not correlate with bacterial growth as inhibition was always observed in media containing bound SO2. Conclusions: Acetaldehyde‐ and pyruvic acid‐bound SO2 were inhibitory to wine LAB growth at concentrations as low as 5 mg l?1. Despite this inhibition, all wine LAB degraded SO2‐bound acetaldehyde and pyruvic acid suggesting that bound SO2 may have a bacteriostatic rather than bacteriocidal action. Significance and Impact of the Study: Sulphur dioxide bound to acetaldehyde or pyruvic acid is inhibitory to growth of wine LAB and must be considered when conducting the malolactic fermentation or controlling the growth of spoilage bacteria such as Pediococcus and Lactobacillus.  相似文献   

14.
Summary Batch propionic acid fermentations by Propionibacterium acidipropionici with lactose, glucose, and lactate as the carbon source were studied. In addition to propionic acid, acetic acid, succinic acid and CO2 were also formed from lactose or glucose. However, succinic acid was not produced in a significant amount when lactate was the growth substrate. Compared to fermentations with lactose or glucose at the same pH, lactate gave a higher propionic acid yield, lower cell yield, and lower specific growth rate. The specific fermentation or propionic acid production rate from lactate was, however, higher than that from lactose. Since about equimolar acid products would be formed from lactate, the reactor pH remained relatively unchanged throughout the fermentation and would be easier to control when lactate was the growth substrate. Therefore, lactate would be a preferred substrate over lactose and glucose for propionic acid production using continuous, immobilized cell bioreactors. Correspondence to: S. T. Yang  相似文献   

15.
Anaerobiospirillum succiniciproducens requires expensive complex nitrogen sources such as yeast extract and polypeptone for its growth and succinic acid production. It was found thatA. succiniciproducens was able to grow in a minimal medium containing glucose when supplemented with corn steep liquor (CSL) as the sole complex nitrogen source. The concentration of CSL had a significant effect on the glucose consumption byA. succiniciproducens. When 10–15 g/L of CSL was supplemented, cells were grown to an OD660 of 3.5 and produced 17.8 g/L succinic acid with 20 g/L glucose. These results are similar to those obtained by supplementing yeast extract and polypeptone, thereby suggesting that succinic acid can be produced more economically using glucose and CSL.  相似文献   

16.
吴辉  李志敏  叶勤 《生物工程学报》2011,27(9):1299-1308
为了了解磷酸转移酶转运系统 (PTS) 依赖和非PTS依赖代谢的糖类对大肠杆菌生产琥珀酸的影响,进行了两阶段培养,有氧阶段采用PTS依赖型的果糖或非PTS依赖型的麦芽糖作为丙酮酸甲酸裂解酶 (PFL) 和乳酸脱氢酶 (LDH) 双突变株NZN111的碳源,研究其对NZN111厌氧阶段代谢葡萄糖的影响。5 L罐发酵结果表明,以果糖和麦芽糖为碳源有氧培养的细胞恢复了在厌氧条件下快速代谢葡萄糖的能力,琥珀酸和丙酮酸成为主要代谢产物,最终琥珀酸得率分别为0.84和0.75 mol/mol,丙酮酸得率分别达到了0.65和0.83 mol/mol,琥珀酸和丙酮酸终浓度比分别为1.73∶1和1.21∶1。果糖和麦芽糖培养的NZN111与葡萄糖培养的菌体代谢的明显差异推测是cyclic AMP (cAMP) 依赖型和非cAMP依赖型的分解代谢物阻遏调控这两种机制共同作用的结果。  相似文献   

17.
The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L?1 h?1 is important if production of succinic acid from renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L?1, was obtained with Na2CO3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of ~40 g L?1. Volumetric productivities remained at 2.5 g L?1 h?1 for up to 10 h longer when K‐ or Na‐bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
Escherichia coli strain NZN111 could convert glucose to succinic acid efficiently in anaerobic conditions after the induction of gluconeogenic carbon sources in aerobic conditions. Acetate shows a strong effect on both yield and productivity of succinic acid. In this study, the fed-batch process of succinic acid production by NZN111 using acetate in a chemically defined medium in the aerobic stage was investigated and developed. Increasing cell density could increase succinic acid with a productivity of 3.97 g/(L h) in the first 8 h of the anaerobic phase with an overall yield of 1.42 mol/mol glucose in a 5 L fermentor. However, there was strong repression from succinic acid in the later anaerobic stage. When succinic acid exceeded 30 g/L, the glucose consumption rate began to drop sharply along with the succinic acid production rate. Supplementation with glucose from 30 to 70 g/L in the anaerobic stage showed little effect on succinic acid production. Acetic acid and pyruvic acid accumulated had no effect on succinic acid formation because of their low concentration. With acetate as the sole carbon source for aerobic cultivation in the following scale-up, 60.09 g/L of succinic acid was produced with a yield of 1.37 mol/mol in a 50 L bioreactor.  相似文献   

19.
Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H+ conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l?1 of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号