首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A glucomannan isolated from konjac flour was hydrolyzed with commercially available crude and purified cellulases. The following oligosaccharides were isolated from the hydrolyzate and identified: (a) 4-O-β-d-mannopyranosyl-d-monnose (b) 4-O-β-d-mannopyranosyl-d-glucose (c) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (d) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (e) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (f) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (g) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (h) 4-O-β-d-glucopyranosyl-d-glucose(cellobiose) (i) 4-O-β-d-glucopyranosyl-d-mannose (epicellobiose) (j) O-β-d-glucopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose. Of these saccharides, (h), (i) and (j) were isolated from the hydrolyzate by purified cellulase, while (g) was isolated from the hydrolyzate by crude cellulase. The others were all present in the hydrolyzates both by crude and by purified cellulases.  相似文献   

2.
Ultracentrifugically homogeneous glucomannan acetate derived from konjac mannan was subjected to acetolysis. Besides β-1,4-linked oligosaccharides composed of D-mannose and/or D-glucose, three oligosaccharides corresponding to the branching point of the polysaccharide were isolated and identified as (1) 3-O-β-D-mannopyranosyl-D-mannose, (2) O-β-D-mannopyranosyl-(1→4)-O-β-D-mannopyranosyl-(1→3)-D-mannose, and (3) O-β-D- mannopyranosyl-(1→3)-O-β-D-mannopyranosyl-(1→4)-D-glucose. The average chain length (CL) was, moreover, determined to be about 46 by methylation analysis. The structural pattern of the glucomannan, including the branching point, is discussed.  相似文献   

3.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

4.
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.  相似文献   

5.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

6.
The acceptor specificity of amylomaltase from Escherichia coli IFO 3806 was investigated using various sugars and sugar alcohols. d-Mannose, d-glucosamine, N-acetyl- d-glucosamine, d-xylose, d- allose, isomaltose, and cellobiose were efficient acceptors in the transglycosylation reaction of this enzyme. It was shown by chemical and enzymic methods that this enzyme could transfer glycosyl residues only to the C4-hydroxyl groups of d-mannose, iY-acetyl- d-glucosamine, d-allose, and d-xylose, producing oligosaccharides terminated by 4–0-α-d-glucopyranosyl-d-mannose, 4–0-α-d-glucopyranosyl-yV-acetyl-d-glucosamine, 4-O-α-d-glucopyranosyl-d-allose, and 4–0-α-d-gluco- pyranosyl-d-xylose at the reducing ends, respectively.  相似文献   

7.
The glucomannan isolated from larch holocellulose was hydrolyzed by a purified endo-d-β-mannanase. The products were fractionated by gel filtration on a Polyacrylamide gel in water and partition chromatography on ion exchange resins in 80% ethanol. The following oligosaccharides were isolated and identified: (a) 4-O-β-d-Manp-d-Man, (b) 4-O-β-d-Glcp-d-Man, (c) 4-O-β-d-Glcp-d-Glc, (d) O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man, (e) O-β-dGlcp-(l →4)-O-β-d-Manp-(l →4)-d-Man, (f) O-β-d-Manp-(l →4)-Oβ-d-Glcp-(l →4)-d-Man, (g) O-β-d-Manp-(l →4)-O-[α-d-Galp-(l →6)]-d-Man, (h) O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-d-Man, and (i) O-β-d-Glcp-(1 →4)-O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man.  相似文献   

8.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

9.
Rubusoside derivatives by transgalactosylation of various β-galactosidases were isolated and their structures were analyzed. Escherichia coli β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→6)-β-d-glucosyl]-steviol (RGal-2). Bacillus circulans β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-steviol (RGal-1a) in the early stage of the reaction and then produced 13-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (RGal-1b). With decreasing the amount of these products (RGal-1a and RGal-1b), RGal-2 was produced.  相似文献   

10.
During an examination of components contributing to the bitter taste of asparagus bottom cut (Asparagus officinalis L.), two new furostanol saponins were isolated from roots extractives. Their chemical structures were established as 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2)-β-d-glucopyranoside 26-O-β-d-glucopyranoside and 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2) [β-d-xylopyranoxyl (1→4)]-β-d-glucopyranoside 26-O-β-d-glucopyranoside respectively.  相似文献   

11.
The surface lipids of Nicotiana benthamiana contained novel glycerolipids and several varieties of glycolipids. As glycerolipids, the triacylglycerol, 1,3-diacylglycerol, and 1,2-diacylglycerol types of glycerolipids were isolated and identified. Each lipid contained acetyl, 16–methylheptadecanoyl, and 18–methylnonadecanoyl moieties. The acetylated position of each lipid was determined by 2D-NMR, using the HMBC technique. The structures were 1,3-di-O-acetyl-2-O-acylglycerol, 1-O-acetyl-3-O-acylglycerol, and 1-O-acetyl-2-O-acylglycerol. As glycolipids, one glucose ester and four types of sucrose esters were isolated and identified. These glycolipids contained acetic acid and such branched short-chain fatty acids as 5-methylhexanoic, 4-methylhexanoic, 6-methylheptanoic, and 5-methylheptanoic acids. The structure of the glucose ester was 3,4-di-O-acyl-α-D-glucopyranose. The structures of the sucrose esters were 6-O-acetyl-4-O-acyl-α-D-glucopyranosyl-(3-O-acyl)-β-D-fructofuranoside, 4-O-acyl-α-D-glucopyranosyl-(3-O-acyl)-β-D-fructofuranoside, 3,4-di-O-acyl-α-D-glucopyranosyl-β-D-fructofuranoside, and 6-O-acetyl-α-D-glucopyranosyl-β-D-fructofuranoside.  相似文献   

12.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

13.
The transxylosylation reaction products of β-xylosidase-1, excreted by Penicillium wortmanni IFO 7237 using β-(1→4)-xylobiose as substrate, have been separated by chromatography on activated charcoal into four fractions, designated as P-1, P-2, P-3, and P-4, respectively. They were further purified by preparative paper chromatography. The characterization and structural analysis were done by measurement of the degree of polymerization (DP) and specific rotation followed by methylation analysis. Moreover, the enzymatic structural analysis of transxylosylation products, with high performance liquid chromatography (HPLC), allowed the confirmation of each structure. The first product, P-1, was β-(1→3)-xylobiose and the second, P-2, was β-(1→4)-xylotriose, but, P-3 was O-β-d-xylopyranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose or isomeric xylo-triose and P-4 was assumed to be O-β-d-xylopyranosyl-(1→4)-[O-β-d-xylopyranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose.  相似文献   

14.
A xyloglucan (MBXG) from the cell walls of etiolated mung bean hypocotyls was characterized by analyzing the fragment oligosaccharides from controlled degradation products of the polymer with acid and enzyme.

Cellobiose, cellotriose and cellotetraose were isolated from the partial acid hydrolyzate of MBXG. Isoprimeverose (6-O-α-d-xylopyranosyl-d-glucopyranose) and a pentasaccharide, α-l-fucosyl-(1 → 2)-β-d-galactosyl-(1 → 2)-α-d-xylosyl-(1 → 6)-β-d-glucosyl-(1 → 4)-d-glucose, were isolated from the hydrolyzate of MBXG with an Asp. oryzae enzyme preparation.  相似文献   

15.
When Leuconostoc mesenteroides NRRL B-1299 was grown on a medium containing sucrose and lactose, a trisaccharide named ‘Lactsucrose’ (O-β-d-galactopyranosyl- (l→4) -O-α-d-glucopyranosyl- (l→2) -β-d-fructofuranoside) was produced. This sugar was obtained as a crystalline acetyl derivative and its structure was identified by the methods of paper chromatography, paper ionophoresis, hydrolysis with acid or enzymes and periodate oxidation.  相似文献   

16.
For the purpose of improving sweetness and a further study on the structure-sweetness relationship of steviol glycosides, transglycosylation of stevioside by a variety of commercial glucosidases was investigated. It was revealed that two α-glucosidases gave glucosylated products. Transglucosylation of stevioside by Pullulanase and pullulan exclusively afforded three products, 13-O-[β-maltotriosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (1), 13-O-[β-maltosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (2) and 13-O-β-sophorosyl-19-O-β-maltotriosyl-steviol (3). All of these products have already been obtained by trans-α-1,4-glucosylation of stevioside by the cyclodextrin glucano-transferase starch system, and 1 and 2 have been proven to be tasty and potent sweeteners. Transglucosylation of stevioside by Biozyme L and maltose afforded three new products, 4, 5 and 6, the structures of these compounds being elucidated as 13-O-β-sophorosyl-19-O-β-isomaltosyl-steviol (4), 13-O-β-isomaltosyl(l → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (5) and 13-O-[β-nigerosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (6). A significantly high quality of taste was evaluated for 4.  相似文献   

17.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

18.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

19.
A plant glycosphingolipid, O-(β-d-mannopyranosyl)-(l → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 1, and the stereoisomer, O-(α-d-mannopyranosyl)-(1 → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 6, were synthesized in a stereo- and regio-controlled way.  相似文献   

20.
The transglucosylation reaction of buckwheat α-glucosidase was examined under the coexistence of 2-deoxy-d-glucose and maltose. As the transglucosylation products, two kinds of new disaccharide were chromatographically isolated in a crystalline form (hemihydrate). It was confirmed that these disaccharides were 3-O-α-d-glucopyranosyl-2-deoxy-d-glucose ([α]d + 132°, mp 130 ~ 132°C, mp of ±-heptaacetate 151 ~ 152°C) and 4-O-±-d-glucopyranosyl-2-deoxy-d-glucose ([±]d + 136°, mp 168 ~ 170°C), respectively. The principal product formed in the enzyme reaction was 3-O-±-d-glucopyranosyl-2-deoxy-d-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号