首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify biodegradation pathways of isoalkyl substituted aromatic hydrocarbons, oxidation products of isopropylbenzene and isobutylbenzene by Ps. desmolytica S449B1 and Ps. convexa S107B1 were examined.

Oxidation products from isopropylbenzene were determined to be 3-isopropylcatechol and (+)-2-hydroxy-7-methyI-6-oxooctanoic acid. Isobutylbenzene was also oxidized to 3-isobutylcatechol and (+)-2-hydroxy-8-methyl-6-oxononanoic acid by the same strains.

From these results, the existence of an unknown reductive step in the degradation of these isoalkyl substituted aromatic hydrocarbons and the initial oxidation of these aromatic hydrocarbons by the strains were made clear. The degradation pathways of isopropylbenzene and isobutylbenzene by these strains were discussed.  相似文献   

2.
During the course of an investigation of the microbial assimilation of aromatic hydrocarbons, several strains were found to produce a large amount of cumic acid from p-cymene.

Five strains, S449B1, B2, B3, B4 and B6, were isolated from soil with the aromatic hydrocarbon substrates. They all assimilated both p-cymene and cumene. The strain S449B3 grew also on p-xylene, and S449B6 on p-xylene, toluene, and ethylbenzene.

They were all shown to be capable of producing an ultraviolet-absorbing substance from p-cymene. This substance was isolated in crystalline form and identified as cumic acid by infrared absorption spectrum and other observations.

The superior strain, S449B6, produced the acid as much as 1000 mg/1 in shaking culture at 30°C after 24 hours. The yields were increased up to approximately 1700 mg/1 after further investigations. Addition of calcium carbonate and considerable agitation were favorable conditions for the acid production.

The taxonomical studies of these strains were carried out, and they were all identified as closely resembling Pseudomonas desmolytica.  相似文献   

3.
A wide range of fungi were tested for their ability to assimilate a series of hydrocarbons, which includedn-paraffins, aromatic hydrocarbons and petroleum fractions.The property is not evenly distributed among the various fungal classes, but is to be found mainly in two orders, the Mucorales and the Moniliales. Within the latter order, the generaAspergillus andPenicillium are rich in hydrocarbon-assimilating strains. In other genera, the property of assimilating hydrocarbons is relatively rare.Hydrocarbon assimilation is not necessarily common to related species, nor proper to one species, but more the property of individual strains. Different strains belonging to the same species differ in metabolic activity when they are tested against a series of hydrocarbons. The property of assimilating hydrocarbons appears to lack taxonomic value. Species of the same genus show only a tendency to behave in a similar way, e.g.Penicillium strains usually assimilaten-decane and light gas oil whereasAspergillus strains seldom do so. Aspergillus species sporulate better on long chainn-paraffins. On some hydrocarbons, they develop particular pigments. n-Paraffins with at least ten carbon atoms support better growth than petroleum fractions. Individual strains are very sensitive to minor changes in hydrocarbon composition or structure. Only sparse delayed growth is observed on aromatic hydrocarbons.n-Heptane, petroleum ether, naphtha and kerosene are often toxic whereas aromatic hydrocarbons are usually non-toxic.  相似文献   

4.
When paraffin wax is dispersed in medium as emulsion, some kinds of bacteria and yeasts readily grow on it. This paper presents a study on microbial cell production from solid paraffin. In this study a paraffin wax which contains 91% of normal paraffins ranging from C25 to C37 with the melting point of 62.5°C was used as a substate, but no solvent was used for the dispersion of the wax.

As a result of this study, the following have been found out. (1) Many strains of liquid normal paraffin assimilating bacteria and yeasts can assimilate paraffin wax. (2) Dried cell yields on added hydrocarbons of Corynebacterium hydrocarboclastus S-12-B2 and Candida tropicalis S-315-Y1 are 70% and 56% respectively, when they are cultured by wax emulsion of 0.6% concentration. (3) When nonion surface-active agent (Plysurf A210G) was added as an emulsifing agent, highly concentrated wax emulsion was obtained, but the growth of microorganisms on it was slower. Further investigation is needed to obtain better strains of bacteria and yeasts and also to find out optimum culture conditions.  相似文献   

5.
d-Glucosaminic acid has recently been found to be an oxidized product of d-glucosamine formed by Ps. fluorescens. It has been revealed that many strains of oxidative bacteria can oxidize glucosamine. The formation of glucosamine acid has been recognized among a large number of strains of Pseudomonas, Acetobacter and Gluconobacter, by means of paper chromatography. Furthermore, one of these strains, A. melanogenum Beijerinck, oxidized glucosamine to glucosaminic acid with the theoretical consumption of oxygen as Ps. fluorescens liquefaciens. Glucosaminic acid was proved by isolation and identification by means of using resting cells.

The experiment of growth shows that Ps. fluorescens liq. could not secure any energy by means of the oxidation of glucosamine.  相似文献   

6.
Screening for p-hydroxybenzoate-utilizing pseudomonads was carried out. Species belonging to Fluorescent group could grow at the expense of p-hydroxybenzoate as sole carbon source. Two species in Chromogenic group and three species in Achromogenic group could grow in the same manner. Specic and total activities of crude extracts differed from each other strain under cultural conditions employed. Ps. desmolytica IAM 1123 and Ps. desmolytica 4-B were selected as superior strains for the sources of p-hydroxybenzoate hydroxylase. The type and the activity of protocatechuate oxygenase were also investigated. Protocatechuate 3,4-oxygenase was found in the cells belonging to Fluorescent and Chromogenic groups whereas 4,5-oxygenase was found in Achromogenic group.  相似文献   

7.
Autochthonous bacteriocenoses in semiarid soils in Patagonia were found to be capable of rapidly adapting to high contamination with crude oil. This adaptation at community level is due to the selective enrichment of hydrocarbon‐utilizing bacteria always present in these soils. Immediately after a heavy contamination with crude oil, the authochthonous bacteriocenosis contained about 28% hydrocarbon‐utilizing bacteria which could be classified into eight ecotypes with characteristic metabolic profiles. Mainly n‐alkanes were used as growth substrates of representative strains. After seven months' exposure to crude oil, the bacteriocenosis consisted almost entirely of hydrocarbon‐utilizing bacteria. At least fourteen ecotypes were distinguishable, and the majority of representative strains were able to metabolize a broad spectrum of aliphatic and aromatic hydrocarbons. Corresponding to the significant alteration of the physiological diversity, drastic changes to the taxonomic diversity were also found. Whereas at the beginning of the study the autochthonous bacteriocenoses were dominated by GRAM ‐positive genera of the Actinomycetales (Dietzia, Gordona, Nocardia, Rhodococcus, Streptomyces) with high ecological potency, after just two months' exposure to crude oil, GRAM ‐ negative bacteria (especially Pseudomonas stutzeri) became predominant within the hydrocarbon‐utilizing bacteriocenoses accompanied by some GRAM ‐positive genera of the Actinomycetales with a significantly lower abundance. These findings underline the importance of Pseudomonas and some genera of Actinomycetales for processes of natural attenuation and the technically supported in situ bioremediation of soil polluted by crude oil in Patagonia.  相似文献   

8.
Waste Water Bacterial Isolates Resistant to Heavy Metals and Antibiotics   总被引:3,自引:0,他引:3  
Sewage water of Casablanca, an industrial city in Morocco, was studied for microorganisms resistant to heavy metals. Isolates were purified and collected on agar slants to be screened for resistance to heavy metals, including mercury in vitro. The strains that showed high resistance to heavy metals were also studied for their resistance to antibiotics and aromatic hydrocarbons. Results indicated that the strains most resistant to all tested products belonged to Ps. fluorescens, Ps. aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus sp. These strains exhibit high minimal inhibitory concentrations for heavy metals such as cadmium (2 mm) or mercury (1.2 mm). Growth of Ps. fluorescens and Klebsiella pneumoniae in the presence of heavy metals was also determined, and the growth curves indicated that mercury, copper, and zinc present a slight inhibitory action, while cadmium and silver could have a potent inhibitory action on growth compared with the controls. These studies also investigated growth in media containing aromatic compounds as the sole source of carbon. The results demonstrate that these strains could be good candidates for remediation of some heavy metals and aromatic compounds in heavily polluted sites. Received: 23 December 1999 / Accepted: 6 April 2000  相似文献   

9.
Mushrooms such as Agaricus bisporus, are cultivated for food worldwide. Fruit body initiation in Agaricus bisporus is a phase change from the vegetative to the reproductive stage which depends on the presence of a casing layer with particular physical, chemical and microbiological properties. The phase change is achieved practically by environmental manipulation and the presence of naturally occurring bacteria such as Pseuodomonas putida. In this study, 274 individual bacterial isolates were collected by screening the casing layer of 14 edible mushroom farms. The isolates were analysed with respect to biochemical properties, organic and inorganic phosphate solubilization, production of siderophore and growth in the presence of volatile compound of 1-octen-3-ol. It was found that approximately 97% of the strains were able to grow in the presence of 1-octen-3-ol and 36% were able to solubilize phosphorus. Among the isolates, 23 strains were selected as potent mushroom growth promoting bacteria (MGPB) for inoculation of the casing layer. Field experiments using these strains showed various promoting effects on production of mushroom. Finally, 2 strains (strains Bt4 and Ps7) showing the highest increase in A. bisporus production, were characterized as Pseuodomonas putida by molecular methods and identified as the best suited growth promoting inoculants for application in production farms for increasing the mushroom yield.  相似文献   

10.
In the course of investigation of alicyclic hydrocarbon-utilizing microorganisms, five strains of ethylcyclohexane-utilizing bacteria were isolated from soil samples.

Among those bacteria, the strain S6B1 that was identified as Alcaligenes faecalis, showed the best growth in shaking culture.

The strain S6B1 was found to produce 4-ethylcyclohexanol from ethylcyclohexane.

This substance separated from culture broth was purified and identified to be trans-4-ethylcyclohexanol by the use of NMR.  相似文献   

11.
Autecological properties that are thought to be important for polycyclic aromatic hydrocarbon (PAH)-degradation by bacteria in contaminated soils include the ability to utilize a broad range of carbon sources, efficient biofilm formation, cell-surface hydrophobicity, surfactant production, motility, and chemotaxis. Sphingomonas species are common PAH-degraders, and a selection of PAH-degrading sphingomonad strains isolated from contaminated soils was therefore characterized in terms of these properties. All the sphingomonads tested were relatively hydrophilic and were able to grow as biofilms on a phenanthrene-coated surface, though biofilm formation under other conditions was variable. Sphingobium yanoikuyae B1 was able to utilize the greatest range of carbon sources, though it was not chemotaxic towards any of the substrates tested. Other sphingomonad strains were considerably less flexible in their catabolic range. None of the strains produced detectable surfactant and swimming motility varied between the strains. Examination of the total Sphingomonas community in the soils tested showed that one of the isolates studied was present at significant levels, suggesting that it can thrive under PAH-contaminated conditions despite the lack of many of the tested characteristics. We conclude that these properties are not essential for survival and persistence of Sphingomonas in PAH-contaminated soils.  相似文献   

12.
66 representative strains of bacteria, yeasts and fungi were tested for their ability to grow in a semidefined medium containing 0.5% nitroethane as a nitrogen source. About half of them were found capable of growing in the medium. Hansenula beijerinckii, Candida utilis, and Penicillium chrysogenum were most active in assimilating nitroethane. 2-Nitropropane inhibited growth of most of the microorganisms tested in a medium containing 0.2% peptone and 0.2% glycerol. Hansenula mrakii was found to grow rapidly in the nitroethane-peptone medium after a lag phase. Nitrite was accumulated in the culture fluid after the phase of logarithmic multiplication, and increased with increase of the growth, followed by a decline after the maximum growth. The alkyl nitro compounds were oxidatively denitrified to form nitrite by the crude enzyme from Hansenula mrakii. Nitroethane was generally a poor substrate, but was the best inducer to produce the nitro compounds oxidizing enzyme. 2-Nitropropane and nitroethane were enzymatically oxidized to and acetone and acetaldehyde, respectively, which were isolated as 2,4-dinitrophenylhydrazones and identified. Nitrite formed was found to be reduced into ammonia by the intact cells and also the crude enzyme.  相似文献   

13.
A microbial mixed culture able to degrade naphtha solvent, a model of hydrocarbon aromatic mixture, was isolated from a hydrocarbon-polluted soil. Composition of the population was monitored by phenotypic and molecular methods applied on soil DNA, on whole enrichment culture DNA, and on 85 isolated strains. Strains were characterized for their 16S rDNA restriction profiles and for their random amplified polymorphic DNA profiles. Catabolic capabilities were monitored by phenotypic traits and by PCR assays for the presence of the catabolic genes methyl mono-oxygenase ( xylA, M), catechol 2,3 dioxygenase (xylE) and toluene dioxygenase (todC1) of TOL and TOD pathways. Different haplotypes belonging to Pseudomonas putida, Ps. aureofaciens and Ps. aeruginosa were found to degrade aromatic compounds and naphtha solvent. The intrinsic catabolic activity of the microbial population of the polluted site was detected by PCR amplification of the xylE gene directly from soil DNA.  相似文献   

14.
15.
Six Selenomonas ruminantium strains (132c, JW13, SRK1, 179f, 5521c1, and 5934e), Streptococcus bovis JB1, and Bacteroides ovatus V975 were examined for nuclease activity as well as the ability to utilize nucleic acids, ribose, and 2-deoxyribose. Nuclease activity was detected in sonicated cells and culture supernatants for all bacteria except S. ruminantium JW13 and 179f sonicated cells. S. ruminantium strains were able to utilize several deoxyribonucleosides, while S. bovis JB1 and B. ovatus V975 showed little or no growth on all deoxyribonucleosides. When S. ruminantium strains 5934e, 132c, JW13, and SRK1 were incubated in medium that contained 15 mm ribose, the major end products were acetate, propionate, and lactate. S. ruminantium 5521c1 and S. bovis JB1 did not grow on ribose, and none of the S. ruminantium strains or S. bovis JB1 grew on 15 mm 2-deoxyribose. In contrast, B. ovatus V975 was able to grow on ribose and 2-deoxyribose. In conclusion, all S. ruminantium strains, S. bovis JB1, and B. ovatus V975 had nuclease activity. However, not all bacteria were able to utilize deoxyribonucleosides, ribose, or 2-deoxyribose. Received: 9 February 2000 / Accepted: 27 March 2000  相似文献   

16.
Two fungi were isolated from soil which grew on 0.1~0.2% formaldehyde as the sole carbon source, and identified as Gliocladium deliquescens and Paecilomyces varioti. Both the strains could grow on 5% methanol and 5% Na-formate, while the former could grow even on 7% methanol. Metabolic pathways were traced through two dimensional paper chromatography and autoradiographic techniques using 14C-formaldehyde, 14C-methanol or 14C-CO2 as substrates.

The intracellular metabolites were persued and their quantitative variation with time was measured. Along with the fact that serine and malate appeared in the earlier time, then appeared organic acids and amino acids belonging to TCA cycle, and the fact that hydroxy-pyruvate reductase and phosphoenolpyruvate carboxylase activities were much stronger in methanol culture than in ethanol culture, it was concluded that the two fungi followed the serine pathway in assimilating C1-compounds. Oxidation enzymes of methanol and formaldehyde were also studied, and an oxidizing system was found besides usual NAD linked methanol or formaldehyde dehydrogenases.  相似文献   

17.
Naphthalene and phenanthrene have long been used as model compounds to investigate the ability of bacteria to degrade polycyclic aromatic hydrocarbons. The catabolic pathways have been determined, several of the enzymes have been purified to homogeneity, and genes have been cloned and sequenced. However, the majority of this work has been performed with fast growing Pseudomonas strains related to the archetypal naphthalene-degrading P. putida strains G7 and NCIB 9816-4. Recently Comamonas testosteroni strains able to degrade naphthalene and phenanthrene have been isolated and shown to possess genes for polycyclic aromatic hydrocarbon degradation that are different from the canonical genes found in Pseudomonas species. For instance, C. testosteroni GZ39 has genes for naphthalene and phenanthrene degradation which are not only different from those found in Pseudomonas species but are also arranged in a different configuration. C. testosteroni GZ42, on the other hand, has genes for naphthalene and phenanthrene degradation which are arranged almost the same as those found in Pseudomonas species but show significant divergence in their sequences. Received 10 August 1997/ Accepted in revised form 15 August 1997  相似文献   

18.
Cheese flavour is the result of complex biochemical transformations attributed to bacteria and yeasts grown on the curd of smear-ripened cheeses. Volatile sulphur compounds (VSCs) are responsible for the characteristic aromatic notes of several cheeses. In the present study, we have assessed the ability of Kluyveromyces lactis, Kluyveromyces marxianus and Saccharomyces cerevisiae strains, which are frequently isolated from smear-ripened cheeses, to grow and deacidify a cheese medium and generate VSCs resulting from l-methionine degradation. The Kluyveromyces strains produced a wider variety and higher amounts of VSCs than the S. cerevisiae ones. We have shown that the pathway is likely to be proceeding differently in these two yeast genera. The VSCs are mainly generated through the degradation of 4-methylthio-oxobutyric acid in the Kluyveromyces strains, in contrast to the S. cerevisiae ones which have higher l-methionine demethiolating activity, resulting in a direct conversion of l-methionine to methanethiol. The deacidification activity which is of major importance in the early stages of cheese-ripening was also compared in S. cerevisiae and Kluyveromyces strains.  相似文献   

19.
Hydrocarbons persist in Antarctic soils when fuel oils such as JP8 jet fuel are spilled. For clean-up of hydrocarbon-contaminated soils in Antarctica, bioremediation has been proposed using hydrocarbon-degrading microbes indigenous to Antarctic soils. A number of alkane-degrading bacteria have been isolated previously from Antarctic soils. In this paper we describe the direct isolation of aromatic hydrocarbon-degrading bacteria from oil-contaminated Antarctic soil. Isolates that grew on JP8 jet fuel were characterised for their ability to degrade aromatic and aliphatic hydrocarbons and for growth at a range of temperatures. All isolates were gram-negative, oxidase-positive, rod-shaped bacteria. Representative strains were identified using 16S rDNA sequence analysis as either Sphingomonas spp. or Pseudomonas spp. Aromatic-degrading bacteria from Antarctic soils were psychrotolerant and appear similar to those found worldwide. Accepted: 27 September 1999  相似文献   

20.
Streptomyces strains isolated from the Kuwait Burgan oil field were defined as S. griseoflavus, S. parvus, and S. plicatus utilised n-hexadecane, n-octadecane (purified fractions of mineral oil), kerosene, and crude oil as sole carbon and energy sources. The strains were incubated with n-alkanes and increase of the fatty acid content with chain length equivalent to the employed n-alkanes was observed. Signal transducing GTP-binding proteins (GBPs) play an important role in n-alkane uptake in streptomycetes. Specific activators of GBPs increased the uptake of hydrocarbons. Using the hydrophobic fluorescent dye diphenylhexatrien (DPH) as a probe, it was found that the microviscosity of the hydrophobic inner region of the cellular membrane is significantly lower in hydrocarbon utilisers than in non-utilisers. This difference probably reflects differences in the fatty acid composition of the strains. When cultures were grown in n-alkane containing media, electron microscopy revealed that the hydrocarbon utilisers showed less-electron dense areas as inclusions in the cytoplasm. Soil samples inoculated with Streptomyces strains eliminated hydrocarbons much faster than those not containing these strains, serving as control. When inorganic medium was supplied with n-hexadecane-1-14C as sole carbon and energy source, radioactive CO2 was detected. Since streptomycetes have not been used until now for oil elimination, though they are known as abundant soil bacteria tolerating extreme conditions, their possible use for bioremediation of hydrocarbon contaminated soils is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号