首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of Zymomonas mobilis ATCC 10988 were immobilized in 1.5% calcium alginate and packed in a column bioreactor for a series of fermentations utilizing 10.0% glucose media with the addition of one of the following amino acids or keto acids: L-leucine, L-isoleucine, L-valine, α-ketoisocaproic acid, α-ketobutyric acid, or α-ketoisovaleric acid. This was done in order to study the rates of production of higher alcohols during ethanolic fermentations at varying dilution rates while under the influence of amino acids or keto acids. Results indicate that the EHRLICH mechanism is operative in Zymomonas sp. α-Ketobutyrate enhanced the production of n-propanol and act-amyl alcohol. α-Ketoisocaproic acid stimulated the production of isoamyl alcohol. α-Ketoisovaleric acid increased the levels of isobutanol. The amino acids also gave rise to their corresponding alcohols but to a far lesser degree than did the keto acids. During high glucose utilization, ethanol yields ranged from 87% to 94% of theoretical with productivity ranging from 60.08 g/l/h in one fermentation (at a dilution rate of 1.35 h?1) to 70.42 g/l/h in another (at a dilution rate of 1.58 h?1). At dilution rates of 1.58 h?1, higher alcohol productivity rose to as high as 4,313 mg/l/h in the presence of α-ketoisocaproic acid, 1,734.49 mg/l/h using α-ketoisovaleric acid, and 1,618.05 mg/l/h in α-ketobutyric acid. The concomitant production of ethanol and higher alcohols in all of the fermentations indicates that glucose is required for the production of the higher alcohols from their corresponding amino acids or keto acids.  相似文献   

2.
It was confirmed that washed yeast cells produced isobutanol from α-acetolactic acid which was presumed as the intermediate in the synthetic pathway of isobutanol from alanine described in the previous report. At the same time α-ketoisovaleric acid was detected in the fermented solution, which seemed to support this scheme. The effects of various fermentation conditions upon the formation of isobutanol were discussed.  相似文献   

3.
We have found that some straight-chained α-amino acids are converted by yeast to the alcohols with correspondingly longer carbon chains in the alcoholic fermentation contrary to F. Ehrlich’s scheme, i.e., isobutyl alcohol from alanine and active amyl alcohol from α-amino-n-butyric acid or threonine.

In this report, we confirmed this fact in the alcoholic fermentation of many aliphatic amino acids by 2 yeast strains using gas chromatography. Moreover, n-propyl alcohol was proved to come from α-amino-n-butyric acid or threonine. Small quantities of n-propyl, isobutyl, active amyl and isoamyl alcohols were found in all the fermented solutions. There was some difference in the composition of higher alcohols of the alcoholic solutions fermented by different yeasts.  相似文献   

4.
Isoamyl alcohol can be used not only as a biofuel, but also as a precursor for various chemicals. Saccharomyces cerevisiae inherently produces a small amount of isoamyl alcohol via the leucine degradation pathway, but the yield is very low. In the current study, several strategies were devised to overproduce isoamyl alcohol in budding yeast. The engineered yeast cells with the cytosolic isoamyl alcohol biosynthetic pathway produced significantly higher amounts of isobutanol over isoamyl alcohol, suggesting that the majority of the metabolic flux was diverted to the isobutanol biosynthesis due to the broad substrate specificity of Ehrlich pathway enzymes. To channel the key intermediate 2-ketosiovalerate (KIV) towards α-IPM biosynthesis, we introduced an artificial protein scaffold to pull dihydroxyacid dehydratase and α-IPM synthase into the close proximity, and the resulting strain yielded more than twofold improvement of isoamyl alcohol. The best isoamyl alcohol producer yielded 522.76 ± 38.88 mg/L isoamyl alcohol, together with 540.30 ± 48.26 mg/L isobutanol and 82.56 ± 8.22 mg/L 2-methyl-1-butanol. To our best knowledge, our work represents the first study to bypass the native compartmentalized α-IPM biosynthesis pathway for the isoamyl alcohol overproduction in budding yeast. More importantly, artificial protein scaffold based on the feature of quaternary structure of enzymes would be useful in improving the catalytic efficiency and the product specificity of other enzymatic reactions.  相似文献   

5.
谷欣哲  方芳 《微生物学通报》2022,49(9):3740-3752
【背景】异戊醇是酵母菌在白酒发酵过程中通过氨基酸合成代谢途径和氨基酸分解代谢途径合成的主要高级醇,其含量影响白酒饮用的舒适度。目的分析和比较分离自浓香型白酒酒醅中的酵母菌合成异戊醇的能力,揭示酵母菌合成异戊醇的途径。方法从酒醅中分离具有异戊醇合成能力的酵母菌株,比较不同生长时期酵母菌合成异戊醇的能力,通过前体物代谢分析它们合成异戊醇的途径。结果分离自酒醅的5株酵母的异戊醇合成能力从强到弱依次为Naumovozyma castellii JP3-1、Saccharomyces cerevisiae JP3、Pichia fermentans JP22、Pichia kudriavzevii JP1和Naumovozyma dairenensis CBS421。这些酵母合成异戊醇的时期主要在对数生长期,N. castellii JP3-1、P. fermentans JP22和N. dairenensis CBS421在稳定生长期也合成异戊醇。S. cerevisiae JP3、N. castellii JP3-1和N. dairenensis CBS421在整个生长时期主要通过Harris途径合成异戊醇;P. kudriavzevii JP1在整个时期主要通过Ehrlich途径合成异戊醇;P. fermentans JP22在对数生长期通过Harris途径和Ehrlich途径合成异戊醇的能力接近,在稳定生长期主要通过Harris途径合成异戊醇。结论本研究揭示了酒醅来源5个属种酵母合成异戊醇的途径、能力与其生长时期的关系,研究结果可为解析浓香型白酒发酵过程异戊醇合成、积累机制及实施白酒发酵过程异戊醇合成的精准调控提供理论依据。  相似文献   

6.
Solution containing l-leucine and l-methionine cultured by Aspergillus flavus were found to develop cheese-like flavor.

α-Keto-isocaproic acid was isolated and identified from the culture of l-leucine and α-keto-β-methylmercaptobutyric acid from that of l-methionine. The flavor was also developed from the mixture of the synthetic sample of α-ketoisocaproic acid and α-keto-β-methylmercaptobutyric acid.  相似文献   

7.
α-Ketoisocaproic acid has been shown to be apotent insulin secretagogue but the mechanism has not been elucidated. To define the role of β-cell metabolism in the insulinotropic activity of α-ketoisocaproic acid the utilization of glucose and the oxidation of α-ketoisocaproic and isovaleric acid by incubated islets of obese hyperglycemic mice were measured.Glucose metabolism was never enhanced by α-ketoisocaproic acid. The same 14CO2 amounts were released from the non-secretagogue [1-14C]isovaleric acid (10 mM) or from α-keto [2-14C]isocaproic acid (5–20 mM). Pyruvate (20 mM) did not inhibit α-ketoisocaproic acid-induced insulin secretion in spite of reduction of decarboxylation of α-ketoisocaproic acid by more than 40%.The results indicate that stimulated insulin release in response to α-ketoisocaproic acid is not mediated by an indirect increase in glucose metabolism and further suggest that isovaleryl-CoA and following CoA-esters in α-ketoisocaproic acid degradation are not likely recognized as signals. The possibility, however, remains that enhanced intramitochondrial production of reducing equivalents elicits insulin secretion.  相似文献   

8.
In the previous reports, we remarked that the ratio of isoamyl alcohol content (includes active amyl alcohol) to that of isobutanol (A/B ratio) in the alcoholic beverage made from grain is lower than that from fruit juice.

In this rseport, the reason why these differences occur was examined. It was certain that the differences of amino acids content and yeast strain used for fermentation are the most effective factors affecting the difference of A/B ratio among alcoholic beverages.  相似文献   

9.
Commercial lipase preparations and mycelium bound lipase from Aspergillus niger NCIM 1207 were used for esterification of acetic acid with isoamyl alcohol to obtain isoamyl acetate. The esterification reaction was carried out at 30°C in n-hexane with shaking at 120 rpm. Initial reaction rates, conversion efficiency and isoamyl acetate concentration obtained using Novozyme 435 were the highest. Mycelium bound lipase of A. niger NCIM 1207 produced maximal isoamyl acetate formation at an alcohol/acid ratio of 1.6. Acetic acid at higher concentrations than required for the critical alcohol/acid ratio lower than 1.3 and higher than 1.6 resulted in decreased yields of isoamyl acetate probably owing to lowering of micro-aqueous environmental pH around the enzyme leading to inhibition of enzyme activity. Mycelium bound A. niger lipase produced 80 g/l of isoamyl acetate within 96 h even though extremely less amount of enzyme activity was used for esterification. The presence of sodium sulphate during esterification reaction at higher substrate concentration resulted in increased conversion efficiency when we used mycelium bound enzyme preparations of A. niger NCIM 1207. This could be due to removal of excess water released during esterification reaction by sodium sulphate. High ester concentration (286.5 g/l) and conversion (73.5%) were obtained within 24 h using Novozyme 435 under these conditions.  相似文献   

10.
Ceratocystis fimbriata was grown in a standard liquid medium to determine the production of aroma compounds as affected by thiamine addition to the inoculum, thiamine or leucine addition to the medium, and the effect of water availability. Ethanol constituted more than half of the total volatiles production in the headspace, followed by ethyl acetate (22.6%), ethyl butyrate (10.8%), isobutanol (7.6%), amyl alcohol (1.6%), isoamyl acetate (1.5%), acetaldehyde (1.2%), ethyl propionate (0.9%), isobutyl acetate (0.4%), diacetyl (0.6%) and isoamyl alcohol (0.3%). Although significant two-way interactions were observed (P < 0.05), production of volatile compounds tended to be higher in inocula prepared with thiamine (T+) than in inocula without thiamine (T–), and in the standard medium with thiamine (SMT) as compared to the standard medium alone (SM) and the SM with leucine (SML). Also, the reduction of water activity (a w) resulted in lower quantities of volatiles being produced.  相似文献   

11.
Summary More than 30 compounds were identified in Kluyveromyces lactis culture, including 5 aromatic hydrocarbons, 9 alcohols, 6 carboxylic acids, 8 esters, 2 ketones and 1 fuanone. Most of them have not been previously reported in the culture of K. lactis. The predominant components are isoamyl alcohol, 2-phenylethanol, and acetoin (73, 72 and 22 mg/L broth, respectively). 2-Phenylethyl acetate, isobutanol, isobutyric and isovaleric acids were also detected in significant amounts.  相似文献   

12.
The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by ∼25% to 4.9 g/L isobutanol in a ∆pycldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways.  相似文献   

13.
14.
ABSTRACT

Yeast histone deacetylases (HDAC) affect the production of alcoholic beverages. In this study, we evaluated the sake fermentation characteristics when using HDAC gene-disrupted yeast strain Kyokai No. 701. Flavor components of the sake product were significantly changed. RPD3 or HDA1 disruption increased twofold the amount of isoamyl acetate, and isoamyl alcohol levels also increased in the rpd3Δ strain. To determine the contribution of Rpd3L and Rpd3S complexes to sake characteristics, a gene responsible for Rpd3L and/or Rpd3S formation was also disrupted. Disruption of DEP1 or SDS3 that is an essential component of Rpd3L led to increased isoamyl alcohol production similar to that of the rpd3Δ strain, but the efficiency of isoamyl alcohol esterification was not affected. In addition, Rpd3 and Hda1 may regulate the responsiveness to oxygen in isoamyl acetate production. We conclude that HDAC genes regulate the production of flavor components during sake fermentation.

Abbreviations: HDAC: Histone deacetylase; HAT: histone acetyltransferase; K701: sake yeast Kyokai No. 701; PCR: polymerase chain reaction; HPLC: high performance liquid chromatography; E/A: Ester/Alcohol; BCAA: branched chain-amino acid; Atf: alcohol acetyltransferase.  相似文献   

15.
One hundred and fifteen Saccharomyces cerevisiae strains from Aglianico del Vulture, a red wine produced in Southern Italy, were characterized for the production of some secondary compounds involved in the aroma and taste of alcoholic beverages. The strains exhibited a uniform behaviour in the production levels of n-propanol, active amyl alcohol and ethyl acetate, whereas isobutanol, isoamyl alcohol and acetaldehyde were formed with a wide variability. Only five strains produced wines close to the reference Aglianico del Vulture wine for the traits considered. Of these, two strains were selected, underwent to tetrad analysis and the single spore cultures were tested in grape must fermentation. The progeny of one strain showed a significant metabolic variability, confirming the necessity to test starter cultures for the segregation of traits of technological interest. Our findings suggest the selection of specific strains for specific fermentations as a function of the vine variety characteristics in order to take the major advantage from the combination grape must/S. cerevisiae strain.  相似文献   

16.
Immobilized lipase from Rhizomucor miehei (Lipozyme IM-20) was employed in the esterification of isovaleric acid and isoamyl alcohol to synthesize isoamyl isovalerate in n-heptane. Response surface methodology (RSM) based on a five-level, five-variable central composite rotatable design (CCRD) was used to evaluate the effects of important variables: enzyme concentration (20–40% w/w of acid), acid concentration (0.2–1.0 M), incubation period (24–120 h), alcohol concentration (0.25–1.25 M) and temperature (30–70 °C) on the esterification yield of isoamyl isovalerate. Extent of conversion was found to be excellent at all acid and alcohol concentrations employed in the range of 0.2–1.25 M, even at low enzyme concentration (20% w/w). The optimum conditions arrived at are as follows: 35% (w/w) enzyme concentration, 1.0 M acid concentration, 1.25 M alcohol concentration and 120 h incubation period, at 35 °C. Under these conditions, the predicted value was 680 mM ester matched very well with an experimental value of 678 mM.  相似文献   

17.
Summary The use of microorganisms in biotechnology is an important economic area of interest in Brazil, especially the use of Saccharomyces cerevisiae in the baking and alcohol fermentation industries. Dimorphism in S. cerevisiae (cell morphology alterations from budding cells to filamentous structures) has been observed in conditions of nitrogen and carbon deprivation and in the presence of fusel alcohols. This can be described as a defense mechanism that allows the yeast to forage for nutrients through cell elongation, hyphal formation and invasive growth. In this work fifteen industrial strains of S. cerevisiae (including haploid and diploid strains) isolated from the fermentative process for alcohol production were characterized for filamentation on solid culture media under growth conditions of carbon- and nitrogen-deprivation and in the presence of fusel alcohols. The majority of strains showed filamentation induced by isoamyl alcohol, butanol, isopropanol and isobutanol, but not by methanol. In rich medium (YEPD), both haploid and diploid strains showed invasive growth, although this kind of filamentous growth was more common in haploid strains. Similar results were observed when fructose or mannose was used as the sole carbon source. In nitrogen-deficient medium (SLAD) the strains did not filament. The results obtained indicate that the filamentation induced by higher alcohols and carbon deprivation (specially carbon) is a common process in industrial strains of S. cerevisiae contributing towards their maintenance/survival in adverse conditions.  相似文献   

18.
Producing fuels and chemical intermediates with cell cultures is severely limited by low product concentrations (≤0.2%(v/v)) due to feedback inhibition, cell instability, and lack of economical product recovery processes. We have developed an alternate simplified production scheme based on a cell‐free immobilized enzyme system. Two immobilized enzymes (keto‐acid decarboxylase (KdcA) and alcohol dehydrogenase (ADH)) and one enzyme in solution (formate dehydrogenase (FDH) for NADH recycle) produced isobutanol titers 8 to 20 times higher than the highest reported titers with S. cerevisiae on a mol/mol basis. These high conversion rates and low protein leaching were achieved by covalent immobilization of enzymes (ADH) and enzyme fusions (fKdcA) on methacrylate resin. The new enzyme system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.135 (mole isobutanol produced for each mole ketoisovaleric acid consumed). Further increasing titer will require continuous removal of the isobutanol using an in situ recovery system. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:66–73, 2016  相似文献   

19.
Summary The production of volatile compounds by 24 strains of Saccharomyces cerevisiae and one strain each of Candida apicola, C. famata, C. guilliermondii, Hanseniaspora occidentalis, Pichia subpelicullosa and Schizosaccharomyces pombe was evaluated with respect to the production of cacha?a. They were isolated from small cacha?a distilleries (27), industrial cacha?a distilleries (2) and one sugarcane alcohol distillery, and tested in synthetic medium for the production of acetaldehyde, ethyl acetate, propanol, isobutanol, isoamyl alcohol, acetic acid and glycerol. The Saccharomyces strains showed a narrow range of variation in the production of such compounds, near 50% of the average of each volatile compound concentration. Principal component analysis showed the separation of the strains into six groups, and acetic acid production was the variable of greatest impact in the differentiation of the strains. The strains of S. pombe formed a distinct group (Group 2), and the strains of C. apicola and H. occidentalis formed a joint group (Group 6) as did Sc13 and Sc4 (Group 4). Group 1 was formed exclusively of S. cerevisiae. The closest non-Saccharomyces strains were C. apicola and H. occidentalis, with a similarity index of about 0.95. The strain P. subpelliculosa showed general characteristics more similar to those of the S. cerevisiae strains than to the non-Saccharomyces strains.  相似文献   

20.
Butyl acetate, isoamyl acetate and isoamyl valerate were prepared by Mucor miehei lipase catalyzed esterification of free acids and alcohols carried out in non-aqueous systems using heptane and silica gel which removes water formed in the reaction. For butyl and isoamyl acetate 1:3 and for isoamyl acetate 1:2 molar proportions of acid to alcohol were found to be optimal. Heptane(5 ml) and 0.01g silica gel per 0.1M acid were found to improve the yields. Under optimum conditions using 60°C, within 48 hours 40% butyl acetate, 53% isoamyl acetate and 61% isoamyl valerate conversions were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号