首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microfloral changes of irradiated petrale sole fillets during anaerobic (vacuum-packed in cans) refrigerated storage was determined by the identification of 1,260 microbial isolates to the generic level. The samples were irradiated at 0.0, 0.1, 0.2, 0.3, and 0.4 Mrad from a cobalt-60 gamma source, stored at 0.5 C, and examined periodically for spoilage and total microbial population and composition. The preirradiation flora consisted of Achromobacter, Micrococcus, Pseudomonas, coryneforms, Lactobacillus, and Flavobacterium. Immediately after irradiation, Micrococcus, Achromobacter, coryneforms, and Bacillus were predominant. After storage under vacuum, the spoilage flora of the nonirradiated petrale sole was predominantly Pseudomonas; the spoilage flora of the 0.1-Mrad irradiated samples consisted of Pseudomonas and Lactobacillus; and that of the 0.2-, 0.3-, and 0.4-Mrad samples was almost entirely Lactobacillus.  相似文献   

2.
The microfloral changes on irradiated petrale sole fillets during aerobic (packaged with oxygen-permeable film), refrigerated storage were determined by the identification of bacterial and yeast isolates to the generic level. The samples were irradiated at 0.0, 0.1, 0.15, 0.2, 0.3, and 0.4 Mrad by use of a cobalt-60 gamma source, were stored at 0.5 C, and were examined periodically for spoilage, total microbial population, and composition. The preirradiation flora of the fresh fillets consisted of coryneforms, Achromobacter, Micrococcus, Flavobacterium, Pseudomonas, and Lactobacillus. Immediately after irradiation, Micrococcus, Achromobacter, coryneforms, and Bacillus were predominant. The flora of the nonirradiated fillets at the time of spoilage consisted of Pseudomonas and Achromobacter. The flora of the irradiated fillets at the time of spoilage consisted of Achromobacter and Trichosporon.  相似文献   

3.
This investigation was carried out to determine the nature of the microbial flora shifts in dover sole as a result of irradiation and storage at 6 C. The relationship was determined between the microorganisms which initially survive irradiation and those making up the final spoilage flora. A total of 2,723 isolates were examined by use of the replica-plating and computer analysis method. The spoilage of the unirradiated control samples during storage at 6 C was almost entirely due to the growth of Pseudomonas. This group, which occupied 25% of the fresh flora, grew to nearly 100% in 2 days of storage. In contrast, irradiation doses of 0.1, 0.2, 0.3, and 0.4 Mrad favored the growth of Achromobacter and yeasts. The Micrococcus, which survived radiation, did not grow at 6 C. At 0.5 Mrad, spoilage of fish samples was due entirely to the growth of yeasts.  相似文献   

4.
An apparatus consisting of a Dewar flask and a relay system controlling the flow of liquid nitrogen permitted the irradiation of samples in tin cans or Pyrex tubes at temperatures ranging from 0 ± 1.5 C to -194 ± 2 C. An inoculated pack comprising 320 cans of ground beef containing 5 × 104 spores of Clostridium botulinum 33A per can (10 cans per radiation dose) was irradiated with Co60 at 0 and -196 C. Incubation was carried out at 30 C for 6 months. Approximately 0.9 Mrad more radiation was required to inactivate the spores at -196 C than at 0 C. Cans irradiated at -196 C showed partial spoilage at 3.6 Mrad and no spoilage at 3.9 Mrad; the corresponding spoilage-no spoilage doses at 0 C were 2.7 and 3.0, respectively. The majority of positive cans swelled in 2 to 14 days; occasional swelling occurred as late as 20 days. At progressively higher doses, swelling was delayed proportionally to the radiation dose received. The remaining nonswollen cans had no toxin after 6 months of storage, although occasional cans contained very low numbers of viable spores comprising on the average 0.1% of the original spore inoculum. The D10 values in phosphate buffer were 0.290 Mrad for 0 C and 0.396 Mrad for -196 C; in ground beef, the corresponding D10 values were 0.463 Mrad and 0.680 Mrad, respectively. These D10 values indicate that the lethal effect of γ rays decreased at -196 C as compared with 0 C by 13.5% in phosphate buffer, and by 47% in ground beef.  相似文献   

5.
Specific growth rates of two strains of Listeria monocytogenes in unirradiated and irradiated (2 kGy) roast beef and gravy stored at 5° and 10°C were found to be similar. However, exponential growth of L. monocytogenes after irradiation was preceded by an extended lag period of 6–9 d at 5°C and 3–4 d at 10°C, compared with lag periods of 1–2 d and <0.1 d in unirradiated beef and gravy stored similarly.  相似文献   

6.
Radiation Sterilization of Bacon for Military Feeding   总被引:6,自引:4,他引:2       下载免费PDF全文
Sliced, cured bacon, packed in cans and seeded with 6 × 105 spores per can of Clostridium botulinum strains 33A or 41B, or with 3 × 106 spores per can of strains 36A, 12885A, 9B, or 53B, was irradiated to various dose levels with γ radiation. Evidence provided by swelling, toxicity, and recoverable C. botulinum with 2,200 inoculated, irradiated cans demonstrated that: (i) 4.5 Mrad were more than adequate as a sterilization dose; (ii) the experimental minimal sterilizing dose was 2.0 Mrad, and the theoretical 12-log reduction dose was 2.65 or 2.87 Mrad depending on the method of calculation; (iii) some spoilage occurred at dose levels below 2.0 Mrad; (iv) all visible spoilage of irradiated bacon was due to strains 33A and 12885A only, whose D values were, respectively, 0.141 and 0.177 Mrad based on spoilage data, and 0.221 and 0.188 Mrad, respectively, when based on recovery data; (v) toxic cans did not always result in swelling, nor did swollen cans always produce toxic spoilage; and (vi) viable C. botulinum can exist for at least 8 months in storage at 30 C without producing visible or toxic spoilage at doses below 2.0 Mrad.  相似文献   

7.
S ummary . The rates of toxin production at 10° by inocula of 105, 104, 103 and 102 spores of Clostridium botulinum type E in vacuum packed herring, cod and haddock were compared with that of equivalent numbers of spores surviving γ-irradiation at 0.3 Mrad. There was little difference between the rates of toxin production in unirradiated and irradiated fish. More toxin was produced in irradiated herring than in unirradiated, but in haddock the reverse was obtained. In cod about equal amounts of toxin were found without trypsinization; after trypsinization toxin levels were generally higher in irradiated samples.  相似文献   

8.
Maximal shelf life was determined and microbial flora were compared for irradiated (0.1 and 0.2 Mrad) and nonirradiated yellow perch fillets stored at 1 C. Shelf life was estimated by organoleptic determinations. Microbiological studies included determination of the effects of irradiation on the total aerobic microbial population, lag phase, and rate of growth. Genera of organisms isolated from fillets through the course of microbial spoilage were identified, and the proteolytic activity of the organisms was determined. Plate counts for fish prior to irradiation showed the presence of approximately 10(6) organisms per g of sample. Irradiation to 0.1 and 0.2 Mrad produced 1.4 and 3 logarithm reductions of the initial count, respectively. Irradiation to 0.1 and 0.2 Mrad approximately doubled the product's shelf life. Organisms initially isolated from the nonirradiated fillets, in order of decreasing number, consisted of Flavobacterium, Micrococcus-Sarcina, Achromobacter-Alcaligenes-Mima, Pseudomonas, Microbacterium, Vibrio, Bacillus, Corynebacterium, Lactobacillus, Brevibacterium, and Aeromonas. By the 6th and 9th days of fillet storage, Pseudomonas and the Achromobacter group were the predominant organisms. All members of the genus Flavobacterium, but not all members of the genus Pseudomonas, were proteolytically active on raw fish juice-agar and skim milk-agar media. The Achromobacter group was found to be nonproteolytic on both media. Residual flora of fillets irradiated to 0.1 and 0.2 Mrad consisted of the Achromobacter group, Lactobacillus, Micrococcus-Sarcina, and Bacillus. Their sequence in predominance, however, varied with dose level. Not all proteolytic bacteria in the fillets were eliminated by 0.1 and 0.2 Mrad; proteolytic Micrococcus-Sarcina survived these treatments.  相似文献   

9.
The microbial populations in chlortetracycline (CTC)-treated (50, 100, 200, and 500 ppm), frozen (-15 C), and irradiated (0.1 Mrad) ocean perch (Sebastodes alutus) were compared. The control sample spoiled at 7 C, primarily because of the growth of Pseudomonas. Irradiation changed this to Achromobacter-dominated spoilage. Freezing or CTC treatment altered the spoilage pattern very little. CTC was particularly effective against ultraviolet fluorescent Pseudomonas species at the higher concentrations. Freezing and CTC were not effective against "coryneforms."  相似文献   

10.
Aims: To determine the contamination levels of Cl. estertheticum spores that result in gaseous spoilage of vacuum‐packaged chilled meats, beef and lamb, stored at two different temperatures, ?1·5 and 2°C. Methods and Results: The study consisted of two separate trials using the same processing parameters applied to beef and lamb at two different storage temperatures and six different inoculation concentrations of Cl. estertheticum. A threshold for pack blowing of c. 1 spore per vacuum pack was seen with both beef and lamb stored at ?1·5 and 2°C. These results highlight the detrimental effect that increasing Cl. estertheticum spore inoculum concentration has on the onset of blown pack spoilage for both meat species stored at ?1·5 and 2°C. Conclusions: This study demonstrates that storage temperature is an extremely important parameter influencing the onset of blown pack spoilage and that storing meat at ?1·5°C significantly delays the onset of blown pack spoilage in comparison with storage at 2°C. Significance and Impact of study: The results of this study indicate that 1 Cl. estertheticum spore may present a risk of spoilage, and thus hygienic carcass dressing is critical to keep contamination to a minimum and maximize storage life of the vacuum‐packed chilled product.  相似文献   

11.
The microbial populations in chlortetracycline (CTC)-treated (50, 100, 200, and 500 ppm), frozen (-15 C), and irradiated (0.1 Mrad) ocean perch (Sebastodes alutus) were compared. The control sample spoiled at 7 C, primarily because of the growth of Pseudomonas. Irradiation changed this to Achromobacter-dominated spoilage. Freezing or CTC treatment altered the spoilage pattern very little. CTC was particularly effective against ultraviolet fluorescent Pseudomonas species at the higher concentrations. Freezing and CTC were not effective against “coryneforms.”  相似文献   

12.
"Screening" packs comprising 10 lots each of codfish cake, corned beef, and pork sausage, each lot containing about 10(6) spores of a different strain (five type A and five type B) of Clostridium botulinum per can, were irradiated at -30 +/- 10 C with a series of increasing doses (20 replicate cans/dose) of (60)Co gamma rays. The cans were incubated for 3 months at 30 C and examined for swelling, toxin, and recoverable botulinal cells. Based on the latter criterion of spoilage, median lethal dose (LD(50)) and D values were estimated for each strain in each food. The most resistant strain in codfish cake, corned beef, and pork sausage was, respectively, 53B, 77A, and 41B. There was no clear-cut trend in the comparative order of resistance between the two antigenic types among the three foods. LD(50) values gave essentially the same order of resistances as the D values and may be used interchangeably with the latter for the 10 test organisms. "Clearance" packs consisting of the most resistant strain (about 10(7) spores/can) with its respective food were irradiated with a variety of doses at -30 +/- 10 C, using 100 replicate cans/dose (about 10(9) spores/dose). These packs were incubated for 6 months at 30 C and assayed for the three types of spoilage. Based on recoverable cells, the experimental sterilizing doses (ESD) for codfish cake, corned beef, and pork sausage were 2.5< ESD 相似文献   

13.
The effect of initial quality of fish on postirradiation (100 krad) changes in the bacterial flora of haddock fillets during aerobic storage at 3 C has been investigated, with emphasis on the Pseudomonas and Achromobacter groups. The quality was related to the length of time the eviscerated fish had been stored in ice prior to filleting. Increased numbers of organisms, in particular Pseudomonas putrefaciens, were found initially on fillets cut from older fish. Pseudomonads were reduced by 2 to 3 log orders by irradiation, and achromobacters and gram-positive isolates predominated in the immediate postirradiation flora. Little difference could be detected in either types or relative proportions of organisms occurring during storage of unirradiated fish of different quality. Pseudomonads outgrew achromobacters and dominated the spoilage flora in all cases. After spoilage, however, the growth rate of pseudomonads declined markedly. In irradiated fish, achromobacters predominated throughout storage. In fish of better initial quality, bacterial numbers were 1 to 2 log orders higher at spoilage than in their unirradiated counterparts and in the poorer quality of irradiated samples. The increased number of organisms was accompanied by a radical change in the character of the predominant achromobacters. Pseudomonads were found to increase in numbers during storage of irradiated fish, in particular in poorer quality fish on which they were initially present in higher numbers. Detection of pseudomonads, even when present in high numbers, was found to be limited by the identification techniques normally used.  相似文献   

14.
The storage time and storage temperature might affect stability of oxidative stress biomarkers, therefore, they have to be analyzed after long-term storage of serum samples. The stability of three biomarkers reflecting oxidative stress: reactive oxygen metabolites (ROM) for hydroperoxides, total thiol levels (TTL) for the redox status and biological antioxidant potency (BAP) for the antioxidant status, was investigated at several time points during 60 months of storage at ?20 and ?80?°C. Biomarkers ROM and BAP showed a very good stability during storage for 60 months at both temperatures. In addition, the correlation of the data after 60 months of storage compared with the starting data was very good with correlation coefficients >0.9. The TTL assay showed good results in serum samples stored at ?80?°C, but not in samples stored at ?20?°C. Serum samples for analysis of the set of oxidative stress biomarkers ROM, BAP and TTL can be stored up to 60 months at ?80?°C. ROM and BAP can also be stored at ?20?°C during this period. The present results are very important for the biomarker-related epidemiological studies that make use of biobanks with samples stored for many years and for new project planning, including sample storage conditions.  相似文献   

15.
Radiation Injury of Clostridium botulinum Spores in Cured Meat   总被引:4,自引:4,他引:0       下载免费PDF全文
Cans of chopped ham, inoculated with spores of Clostridium botulinum strains 33A and 41B at levels of 2,500 and 250 per gram, were subjected to an enzyme-inactivating heat treatment and irradiation with 0.5, 1.5, 2.5, or 3.5 Mrad of Co(60). A portion of the pack was not irradiated, and received a commercial thermal process (F(0) = 0.2). Viable spores were enumerated after treatment and after 6 months of incubation at 30 to 37.7 C. Toxic spoilage occurred at 0 and 0.5, but not at 1.5, 2.5, or 3.5 Mrad. More spoilage and toxin formation occurred in the product irradiated at 0.5 Mrad than in identical product receiving no radiation treatment. Confirmed botulinal spores were isolated from all of the radiation variables of 2,500 per gram-inoculated product and from all but the 3.5 Mrad low-inoculum cans. However, neither growth nor toxin was observed in unspoiled product. The "injury" phenomenon previously described in thermally processed cured meats (survival of botulinal spores without capacity for multiplication or toxigenesis) apparently occurs also in irradiated cured meats.  相似文献   

16.
This article reviews the literature on freezing mammalian oocytes and embryos, with emphasis on embryos of domestic animals. Mammalian embryos must be stored in a quiescent state to retain viability for long periods. This has been accomplished by freezing and storing the embryos at ?196°C. To freeze embryos, a cryoprotectant like dimethyl sulfoxide (DMSO) or glycerol was required, slow cooling (0.1 to 2.0°C/min) and warming (1 to 50°C/min) rates were used, enucleation or seeding the freezing medium was a necessity, and stepwise addition and removal of the cryoprotectant at room temperature seemed to be beneficial. Using the above parameters embryos have been frozen and stored at ?196°C for several years and upon thawing and transfer to a suitable recipient, viable offspring have developed. Initially embryo viability was low after freezing-thawing, but with refinement of freezing-thawing techniques has increased sufficiently so that freezing embryos is no longer a laboratory technique, but is applicable to field use.  相似文献   

17.
Salmonella typhimurium and S. enteritidis were inoculated into blended oysters, both raw and autoclaved. The oysters were also treated with sodium benzoate (0.1%) or potassium sorbate (0.1%), and irradiated (0.1 Mrad). In both non-irradiated and irradiated samples, greater numbers of Salmonella were recovered after storage at 7 C in the presence of sodium benzoate or potassium sorbate. The results of the autoclaved samples and studies in buffer indicated that this effect was not due to the reduction of competition from the natural flora when the additives were present.  相似文献   

18.
Methods of processing and storing lettuce mosaic and cucumber mosaic virus infected tissues prior to ELISA have been examined. Virus antigen detection was highest in samples homogenised in phosphate inoculation buffer (1% K2HPO4, 0.1% Na2SO3) and stored at either — 20°C or — 196°C. Detection was poor in samples homogenised in phosphate buffered saline prior to storage and in samples of all treatments stored at 4°C. Freeze-dried leaf segments retained a high concentration of antigen, as did freeze-dried homogenates of samples prepared in inoculation buffer. Higher levels of antigen were detected in samples stored as whole leaves at 4°C for 24 h before processing, than in samples stored as leaf segments during this period.  相似文献   

19.
Cracked corn was irradiated with gamma rays at 0-100 Mrad and the effects of the irradiation on sugar yield, susceptibility to enzymatic hydrolysis of starch, yeast growth, and alcohol production were studied. Gamma irradiation at 50 Mrad or greater produced a considerable amount of reducing sugar but little glucose. At lower dosages, gamma irradiation significantly increased the susceptibility of corn starch to enzymatic hydrolysis, but dosages of 50 Mrad or greater decomposed the starch molecules as indicated by the reduction in iodine uptake. About 12.5% reducing sugar was produced by amylase treatment of uncooked, irradiated corn. This amount exceeded the level of sugar produced from cooked (gelatinized) corn by the same enzyme treatment. The yeast numbers in submerged cultivation were lower on a corn substrate that was irradiated at 50 Mrad or greater compared to that on an unirradiated control. About the same level of alcohol was produced on uncooked, irradiated (10(5)-10(6) rad) corn as from cooked (121 degrees C for 30 min) corn. Therefore, the conventional cooking process for gelatinization of starch prior to its saccharification can be eliminated by irradiation. Irradiation also eliminated the necessity of sterilization of the medium and reduced the viscosity of high levels of substrate in the fermentation broth.  相似文献   

20.
The present study investigated whether long-term cold storage at high relative humidity (RH) affected the quality of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) in terms of its survival and reproduction. For this purpose, we examined biological traits at the end of storage and during the post-storage period. Mated females three?days after adult emergence were stored individually in 1.5-ml vials for 15, 30, 45, 60, or 75?days at 5.0?±?0.3°C and RH of 99?±?0.1% under continuous darkness. At the end of the storage period, 94–100% of females had survived when the storage period was ≤30?days, but percent survival decreased with longer storage. After storage, female survival and oviposition rates were equivalent to un-stored females at 24?±?1°C, RH of 93?±?2%, and a photoperiod of LD 16:8?h. The quality of progeny (hatchability, survival to adulthood, and sex ratio) of stored females was not affected by storage periods as long as 60?days. These results indicate that storage using the tested method can preserve N. californicus for at least 30?days without any degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号