首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
State III respiration rates were measured in mitochondria isolated from hearts of Antarctic notothenioid fishes that differ in the expression of hemoglobin (Hb) and myoglobin (Mb). Respiration rates were measured at temperatures between 2 and 40°C in Gobionotothen gibberifrons (+Hb/+Mb), Chaenocephalus aceratus (–Hb/–Mb) and Chionodraco rastrospinosus (–Hb/+Mb). Blood osmolarity was measured in all three species and physiological buffers prepared for isolating mitochondria and measuring respiration rates. Respiration rates were higher in mitochondria from G. gibberifrons compared to those from C. aceratus at 2°C, but were similar among all species at temperatures between 10 and 26°C. Respiration rates were significantly lower in icefishes at 35 and 40°C compared to G. gibberifrons. The respiratory control ratio of isolated mitochondria was lower in C. aceratus compared to G. gibberifrons at all temperatures below 35°C. At 35 and 40°C, mitochondria were uncoupled in all species. The Arrhenius break temperature of state III respiration was similar among all three species (30.5 ± 0.9°C) and higher than values previously reported for Antarctic notothenioids, likely due to the higher osmolarity of buffers used in this study. These results suggest that differences in mitochondrial structure, correlated with the expression of oxygen-binding proteins, minimally impact mitochondrial function.  相似文献   

2.
 Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse, bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54  °C in horse and at 57  °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35  °C, followed by a second amide II transition at 50  °C revealing a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50  °C (tuna) and 54  °C (horse) are also observed during the thermal titration of the CN-ligated cytochromes (where CN displaces the Met80 ligand), but a well-defined 35  °C amide II transition is absent from the titration curve of the CNadduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5  °C range with T m values at 74  °C (bovine c), 70  °C (horse c) and 65  °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the ferricytochromes c at 25  °C. Curve fitting of the amide I (H2O) and amide I′ (D2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D2O is a powerful tool in protein conformational analysis. Received: 1 April 1999 / Accepted: 24 August 1999  相似文献   

3.
Increased glucose concentration in diabetes mellitus causes glycation of several proteins, leading to changes in their properties. Although glycation-induced functional modification of myoglobin is known, structural modification of the protein has not yet been reported. Here, we have studied glucose-modified structural changes of the heme protein. After in vitro glycation of metmyoglobin (Mb) by glucose at 25°C for 6 days, glycated myoglobin (GMb) and unchanged Mb have been separated by ion exchange (BioRex 70) chromatography, and their properties have been compared. Compared to Mb, GMb exhibits increased absorbance around 280 nm and enhanced fluorescence emission with excitation at 285 nm. Fluorescence quenching experiments of the proteins by acrylamide and KI indicate that more surface accessible tryptophan residues are exposed in GMb. CD spectroscopic study reveals a change in the secondary structure of GMb with decreased α-helix content. 1-anilino-naphthaline-8-sulfonate (ANS) binding with Mb and GMb indicates that glycation increases hydrophobicity of the heme protein. GMb appears to be less stable with respect to thermal denaturation and differential calorimetry experiments. Heme-globin linkage becomes weaker in GMb, as shown by spectroscopic and gel electrophoresis experiments. A correlation between glycation-induced structural and functional modifications of the heme protein has been suggested.  相似文献   

4.
Apo and holo forms of lactoferrin (LF) from caprine and bovine species have been characterized and compared with regard to the structural stability determined by thermal denaturation temperature values (T m), at pH 2.0–8.0. The bovine lactoferrin (bLF) showed highest thermal stability with a T m of 90 ± 1°C at pH 7.0 whereas caprine lactoferrin (cLF) showed a lower T m value 68 ± 1°C. The holo form was much more stable than the apo form for the bLF as compared to cLF. When pH was gradually reduced to 3.0, the T m values of both holo bLF and holo cLF were reduced showing T m values of 49 ± 1 and 40 ± 1°C, respectively. Both apo and holo forms of cLF and bLF were found to be most stable at pH 7.0. A significant loss in the iron content of both holo and apo forms of the cLF and bLF was observed when pH was decreased from 7.0 to 2.0. At the same time a gradual unfolding of the apo and holo forms of both cLF and bLF was shown by maximum exposure of hydrophobic regions at pH 3.0. This was supported with a loss in α-helix structure together with an increase in the content of unordered (aperiodic) structure, while β structure seemed unchanged at all pH values. Since LF is used today as fortifier in many products, like infant formulas and exerts many biological functions in human, the structural changes, iron binding and release affected by pH and thermal denaturation temperature are important factors to be clarified for more than the bovine species.  相似文献   

5.
The activity and thermal stability of α-amylase were studied in the presence of different concentrations of trehalose, sorbitol, sucrose and glycerol. The optimum temperature of the enzyme was found to be 50 ± 2°C. Further increase in temperature resulted in irreversible thermal inactivation of the enzyme. In the presence of cosolvents, the rate of thermal inactivation was found to be significantly reduced. The apparent thermal denaturation temperature (T m )app and activation energy (E a ) of α-amylase were found to be significantly increased in the presence of cosolvents in a concentration-dependent manner. In the presence of 40% trehalose, sorbitol, sucrose and glycerol, increments in the (T m )app were 20°C, 14°C, 13°C and 9°C, respectively. The E a of thermal denaturation of α-amylase in the presence of 20% (w/v) trehalose, sorbitol, sucrose and glycerol was found to be 126, 95, 90 and 43 kcal/mol compared with a control value of 40 kcal/mol. Intrinsic and 8-anilinonaphathalene-1-sulphonic acid (ANS) fluorescence studies indicated that thermal denaturation of the enzyme was accompanied by exposure of the hydrophobic cluster on the protein surface. Preferential interaction parameters indicated extensive hydration of the enzyme in the presence of cosolvents.  相似文献   

6.
An expression system of recombinant myoglobins (Mb) of 3 scombridae fish species was constructed. The stability of these Mbs was compared with native Mbs purified from slow skeletal muscle. The addition of hemin during the cultivation of an Escherichia coli strain harboring a pGEX-2T expression vector was found to be necessary to prevent recombinant Mb from degrading and to attain its proper folding. The stabilities of recombinant Mbs were generally lower than those of native Mbs, partly due to the absence of post-translational modification. The alpha-Helical content of bullet tuna recombinant Mb at 10 degrees C was the lowest (29.0%) among the recombinant Mbs examined (the values for bluefin tuna and bigeye tuna Mbs being 34.8 and 35.5%, respectively). On the other hand, the stabilities of recombinant Mbs of bluefin tuna and bigeye tuna against denaturants (urea and guanidine hydrochloride) were found to be similar, whereas bullet tuna recombinant Mb exhibited the lowest stability among these Mbs. The pattern of temperature-dependent decrease in the alpha-helical content supported these results.  相似文献   

7.
Reversible thermal denaturation of phosphoglycerate kinases (E.C. 2.7.2.3) from an extremely thermophilic bacterium Thermus thermophilus and from yeast were studied by measuring their circular dichroism and fluorescence intensity. The thermal denaturation in the presence of guanidine hydrochloride was completely reversible. The thermodynamic parameters for the reaction were calculated based on a two-state mechanism. The free energy changes in denaturation at 25 °C in the absence of denaturant were estimated to be 11.87 ± 0.21 kcal/mol for T. thermophilus phosphoglycerate kinase and 5.33 ± 0.13 kcal/mol for that of yeast. It was found that the van't Hoff plot of the equilibrium constant for the denaturation reaction was almost independent of temperature in the temperature range 0 to 60 °C for T. thermophilus phosphoglycerate kinase, while that of yeast phosphoglycerate kinase was strongly temperature-dependent as reported for other thermolabile proteins. The enthalpy change in denaturation varies from 0.03 to 6.2 kcal/mol (0 to 60 °C) for T. thermophilus phosphoglycerate kinase and from ?27 to 31 kcal/mol (10 to 35 °C) for yeast enzyme. The entropy change in denaturation varies from ?3.9 to 21 entropy units for T. thermophilus phosphoglycerate kinase and ?96 to 104 entropys unit (10 to 35 °C) for yeast enzyme. The heat capacity change in denaturation is between 1.4 and 63 cal/deg. mol for the thermophile enzyme and between 1530 and 1750 cal/deg. mol for yeast enzyme at 20 °C. The observations that the enthalpy changes as well as the heat capacity changes in denaturation of the thermophilic enzyme were negligibly small suggest an explanation for the unusual stability to heat of T. thermophilus phosphoglycerate kinase.We also propose three possible mechanisms for the thermostability of proteins in general.  相似文献   

8.
Nitration in proteins is a physiologically relevant process and the formation of 3-nitrotyrosine was first proposed as an in vivo marker of the production of reactive nitrogen species in oxidative stress. No studies have been published on structural changes associated with nitration of myoglobin. To address this deficiency the electrochemical nitration of equine skeletal muscle (Mb) at amino acid tyrosine 103 has been investigated for the evaluation and characterization of structural and thermal stability changes. Y103 in Mb is one of the most exposed tyrosine residues and it is also close to the heme group. Effects of Y103 nitration on the secondary and tertiary structure of Y103 have been studied by UV–Vis, circular dichroism, fluorescence and NMR spectroscopy and by electrochemical studies. At physiological pH, subtle changes were observed involving slight loosening of the tertiary structure and conformational exchange processes. Thermal stability of the nitrated protein was found to be reduced by 5 °C for the nitrated Mb compared with the native Mb at physiological pH. Altogether, NMR data indicates that nitrated Mb has a very similar tertiary structure to that of native Mb, although with a slightly open conformation.  相似文献   

9.
The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl),pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65°C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasingpH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55°C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5°C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.  相似文献   

10.
Teleost myoglobin (Mb) proteins from four fish species inhabiting different temperature environments were used to investigate the relationship between protein function and thermal stability. Mb was isolated from yellowfin tuna (homeothermal warm), mackerel (eurythermal warm), and the Antarctic teleost Notothenia coriiceps (stenothermal cold). Zebrafish (stenothermal tropical) myoglobin was expressed from cloned cDNA. These proteins differed in oxygen affinity, as measured by O2 dissociation rates and P50 values, and thermal stability as measured by autooxidation rates. Mackerel Mb had the highest P50 value at 25 degrees C (3.7 mmHg), corresponding to the lowest O2 affinity, followed by zebrafish (1.0 mmHg), yellowfin tuna (1.0 mmHg), and N. coriiceps (0.6 mmHg). Oxygen dissociation rates and Arrhenius plots were similar between all teleost species in this study, with the exception of mackerel myoglobin, which was two-fold faster at all temperatures tested. Myoglobin from the Antarctic teleost had the highest autooxidation rate (0.44 h(-1)), followed by mackerel (0.26 h(-1)), zebrafish (0.22 h(-1)), and yellowfin tuna (0.088 h(-1)). Primary structural analysis revealed residue differences distributed throughout the polypeptide sequences, making it difficult to identify, which, if any, residues contribute to structural flexibility. However, analysis of molecular dynamics trajectories indicates that Mb from the eurythermal mackerel is predicted to be the most flexible protein within the D loop and FG turn. At the same time, it has the lowest O2 affinity and the highest O2 dissociation rates when compared to myoglobins from teleosts that appear to be less flexible in our dynamics simulations.  相似文献   

11.
Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31–37?°C (minor thermal transition, T s?~?33?°C) and 37–55?°C (major thermal transition, T m?~?40?°C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T p2?=?40?°C) had better heat resistance than the smaller one (T p1?=?33?°C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.  相似文献   

12.
Lee Johnson  Dieter Sll 《Biopolymers》1971,10(11):2209-2221
Valine specific transfer RNA (tRNAVal) was isolated from Bacillus stearothermophilus and Escherichia coli by chromatography on benzoylated DEAE–cellulose (BD–cellulose). Likewise isoleucine specific transfer RNA (tRNAIle) was isolated from B. stearothermophilus and from Mycoplasma sp. Kid. The thermal denaturation profiles (melting curves) of the two tRNAVal species in the presence of Mg+ + were nearly identical. However, the Tm for the Kid tRNAIle was about 10°C lower than that for the B. stearothermophilus tRNAIle. A nuclease and tRNA-free aminoacyl-tRNA synthetase (AA-tRNA synthetase) preparation from B. stearothermophilus was able to function efficiently at temperatures up to 80°C in the aminoacylation of all four tRNA species. Determination of the amino acid-acceptor activity of each tRNA species as a function of temperature of the aminoacylation reaction showed in each case a strong correlation between the loss of acceptor activity and the thermal denaturation profile of the tRNA. Evidence is presented that the loss in acceptor activity is most likely due to a change in structure of the tRNA as opposed to denaturation of the enzyme. These results further support the idea that correct secondary and/or tertiary structure must be maintained for tRNA to be active as a substrate for the AA-tRNA synthetase.  相似文献   

13.
An extracellular phytase from Bacillus subtilis US417 (PHY US417) was purified and characterized. The purified enzyme of 41 kDa was calcium-dependent and optimally active at pH 7.5 and 55°C. The thermal stability of PHY US417 was drastically improved by calcium. Indeed, it recovered 77% of its original activity after denaturation for 10 min at 75°C in the presence of 5 mM CaCl2, while it retained only 22% of activity when incubated for 10 min at 60°C without calcium. In addition, PHY US417 was found to be highly specific for phytate and exhibited pH stability similar to Phyzyme, a commercial phytase with optimal activity at pH 5.5 and 60°C. The phytase gene was cloned by PCR from Bacillus subtilis US417. Sequence analysis of the encoded polypeptide revealed one residue difference from PhyC of Bacillus subtilis VTTE-68013 (substitution of arginine in position 257 by proline in PHY US417) which was reported to exhibit lower thermostability especially in the absence of calcium. With its neutral pH optimum as well as its great pH and thermal stability, the PHY US417 enzyme presumed to be predominantly active in the intestine has a high potential for use as feed additive.  相似文献   

14.
Polyproline II (PPII) fold, a peculiar structural element was detected in the Amaranthus caudatus seed lectin (ACL) based on far UV circular dichroism spectrum, conformational transitions of the lectin, and a distinct isodichroic point in thermal denaturation. It was confirmed using PolyprOnline database to estimate the percentage of amino acids contributing to PPII fold and showed the values as 13.5 and 13.9% for PROSS and XTLSSTR, respectively. Investigations of the functional and conformational transitions of ACL during thermal-, pH-, and guanidine hydrochloride (GdnHCl)-induced denaturation were carried out using biochemical and biophysical techniques and molecular dynamics (MD) simulations approach. The lectin got aggregated at 60°C with instantaneous structural alterations. The aggregation-prone regions in ACL were predicted using online servers viz. AGGRESCAN, AmylPred, FoldAmyloid, and Waltz that were represented by Visual Molecular Dynamics tools. Nine conserved regions were identified by these softwares as being ‘hot-spots’ for aggregation. MD simulation studies of the lectin at 60°C revealed increase in radius of gyration. The loss of PPII fold in 2.0 M GdnHCl was reversible. The partially unfolded intermediate of ACL with diminished PPII fold formed at pH 1.0 was stable up to 90°C. The polyproline II fold has been rarely detected in lectins, ACL being the second after the potato lectin.  相似文献   

15.
The fidelity achieved in first derivative profiles of DNA thermal denaturation is shown to depend on a number of factors including the thermal increment of data gathering, the precision of absorbance readings, and the manner in which data are smoothed prior to calculating the derivative of hyperchromicity. The closeness with which thermal denaturation data can be fitted by a cubic polynomial is carefully considered, and a derivation is presented for the estimated error in calculated values of the derivative of hyperchromicity with respect to temperature. After reviewing both theoretical and experimental evidence for the expected minimum width of a thermal transition in DNA, we conclude that thermal increments of 0.05°C or less are required for an adequate representation of transitions in naturally occurring DNA's. Data gathered under conditions meeting the requirements suggested here for quantitative recording of thermal denaturation profiles (Vizard and Ansevin, submitted for publication) show that virtually all of the high-resolution thermal denaturation profile of a simple, naturally occuring DNA may consist of small subtransitions, which we call thermalites. The finding of substransitions is consistent with current theories of DNA melting. A particularly well-resolved thermalite of λ bacteriophage DNA has a breadth of only 0.30°C (2σ width), and thus is narrower than previously reported thermal transitions for DNA. For this thermalite, the combination of width, shape, and position in the profile suggests that the substransitions observed in accurately recorded DNA thermal denaturation profiles are not described satisfactorily by existing theories. Knowledge of the requirements for the quantitative recording of thermal denaturation profiles should greatly favor the usefulness of denaturation experiments for physical genomic analysis.  相似文献   

16.
By the method of differential scanning calorimetry, it was found that thermal stability of glucose oxidase was dependent on its redox states. The oxidized form showed an apparent denaturation temperature at 76°C and the denaturation enthalpy was approximately 865 kcal/mol. On reduction of the enzyme, the denaturation temperature increased by about 10°, but no significant change was seen in the denaturation enthalpy. The activation energies of the denaturation of the oxidized and the reduced enzymes were about 89 and 103 kcal/mol, respectively. These results may imply conformational changes in the catalytic turnover of this enzyme.  相似文献   

17.
Infrared spectra of 2.5 mM solutions of β-lactoglobulin B were recorded as a function of pH (from pH 2 to pH 13) and as a function of temperature (from −100°C to +90°C). An analysis of the pH- and temperature-induced changes in the secondary structures was performed based on changes in the conformation-sensitive amide I bands of β-lactoglobulin. Whereas the total of β-structure remains constant (56–59%) between pH22 and pH 10, the proportions of the various β-components do change. In particular, the dimerization of the monomeric protein, induced by raising the pH from 20 to 3, leads to an increase in the intensity of the 1636 cm−1 band (associated with antiparallel β-sheet), at the expense of the 1626 cm−1 band (associated with exposed β-strands). Both the thermal and alkaline denaturation of β-lactoglobulin occur in two distinct stages. Although the spectra (i.e., the structures) after complete thermal or alkaline denaturation are clearly different, the spectrum of the protein after the first stage of thermal denaturation (at about 60°C) is the same as that after the first stage of alkaline denaturation (at pH 11), suggesting a common denaturation intermediate, which probably represents a crossover point in a complex potential hypersurface.  相似文献   

18.
Abstract

Scanning microcalorimetry was used for the study of thermal denaturation of E.coli and bovine liver dihydrofolate reductases (cDHFR and bDHFR, respectively) and their complexes with NADPH, trimethoprim (TMP) and methotrexate (MTX) at pH 6.8. It was shown that the denaturation temperature of bDHFR is 7.2°C less than that of cDHFR and that ionic strength is equally important for the thermostability and cooperativity of the denaturation process of the two proteins. Binding of antifolate compounds significantly stabilizes DHFR against heat denaturation. The stabilizing effect and the transition cooperativity depend on the nature of the inhibitor, the presence of NADPH and the origin of the enzyme. The dependence of calorimetric denaturation enthalpy (calculated per gram of protein) on denaturation temperature for DHFRs, their complexes with NADPH and binary/ternary complexes with TMP/MTX fits to the same straight line with the slope of 0.66 J/K g. This relatively high value indicates an essential role of hydrophobic contacts in the stabilization of DHFR structure. The change of denaturation temperatures in binary complexes with MTX/TMP (in comparison with the free enzymes) is as much as 14.2°C/8.5°C and 13.3°C/3.2°C for cDHFR and bDHFR, respectively. The same change in ternary complexes with MTX/TMP is much more pronounced and equals to 21.9°C/16.8°C and 29.0°C/16.4°C. The vast difference of binary and ternary complexes thermostability demonstrates the important role of cofactor in the stabilization of enzyme. Moving from binary to ternary systems causes a significant increase in denaturation temperatures, even when corresponding association constants do not change (cDHFR binary/ternary complexes with MTX) or increases very slightly (bDHFR binary/ternary complexes with TMP). In all other cases the increase of denaturation temperature  相似文献   

19.
Although the thermal unfolding/aggregation behavior of proteins in solution has been extensively studied, little is known about proteins immobilized on the surface of nanoparticles and other solid-phase materials. In this study we carefully monitor and analyze the thermal denaturation process of three model proteins adsorbed onto aluminum hydroxide as a function of temperature by FT-IR spectroscopy. The results reveal that the proteins immobilized onto aluminum hydroxide retain their native conformation at lower temperatures (<45 °C). Upon thermal denaturation, the structural transition between the native and denatured states is very similar, in terms of disappearance of the major native secondary structural elements, between the proteins adsorbed onto aluminum hydroxide adjuvant and in solution. This result suggests that the thermal stability of proteins is not significantly affected, or marginally affected at most, by the adsorption onto aluminum hydroxide adjuvant, considering a 5 °C temperature interval used for data collection. However, the adsorption rate and crowding of proteins on aluminum hydroxide particles have a profound effect on the aggregation behavior of the proteins, hydrogen bonding strength of intermolecular β-sheet aggregates and conformation of intermediate states.  相似文献   

20.
Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70–95°C. Thermal stability was expressed in decimal reduction time. It was observed that the D‐values obtained were almost constant for temperatures of 85, 90, and 95°C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75°C, PEG 600 and 4,000 g/mol stabilized GFP. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号