首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The induced formation of uricase by the cultured cells of Streptomyces sp. and the effect of purine bases on the enzyme formation were studied. The microorganism was grown in media containing urate and/or purine bases (adenine, guanine, hypoxanthine or xanthine) and the development of the uricase activity of the cells were measured at intervals. The disappearance of urate and purine bases from the media was also determined. Without the purine bases, the production of uricase was significantly low even in the presence of urate and the disappearance of urate from the medium was in a slow rate. Upon the addition of hypoxanthine or xanthine in the presence of urate, a significant increase in the uricase activity of the cells and a concomitant rapid decrease of urate in the medium were observed. The purine bases added to the media were incorporated into the cells at a relatively early period of the culture and appeared to be converted into urate within the cells. The repression of uricase formation in the cultured cells and the derepression by the addition of the purine bases were discussed.  相似文献   

2.
The cells of a strain of Streptomyces sp. grown in a medium consisted of peptone, glucose and inorganic salts had little activity of urate degradation. The activity, however, was considerably promoted if the cells were incubated potassium phosphate buffer containing MgCl2 and glucose, even in the absence of urate. Uricase activity of the cells was also significantly increased during the incubation without urate. The cells were shown to possess the activities of metabolizing adenine, guanine, hypoxanthine to urate. The incubation with these purines caused an acceleration of urate breakdown by the cells and a remarkable increase of uricase activity in the cells. However, the amounts of uricase produced differed considerably with the kind of purines added to the incubation mixture even in the same molar concentration, and was largest with hypoxanthine. The induced formation of uricase by the endogenously generated urate was discussed.  相似文献   

3.
A strain of Streptomyces sp. produced little of uricase in the cells when they were grown in a medium consisted of peptone, glucose and inorganic salts, even in the presence of urate. The cells, however, formed a large amount of the enzyme, when they were incubated with urate in K-phosphate buffer. The amount of uricase thus formed was maximum by the cells which were harvested at the middle logarithmic phase of the preliminary growth. The induced formation of uricase required K ions in addition to Mg ions and was accelerated by glucose and some other carbon sources. The enzyme formation was inhibited completely by chloramphenicol at a low concentration. An equimolar allantoin to urate decomposed by the cells was accumulated in the incubation mixture. More than 3.0 units of uricase per g of wet cells were produced under the best conditions known from the present experiments. The derepression of uricase formation in the resting cells incubated in the phosphate buffer was discussed.  相似文献   

4.
5.
Cells of a strain of Streptomyces sp. were incubated with an equivalent quantity of urate, xanthine, 6,8-dihydroxypurine or hypoxanthine in a medium deprived of other nitrogen source. The amount of uricase produced by these cells was shown to differ significantly, increasing in the following order of purine bases added to the medium: urate, xanthine, 6,8-dihydroxypurine and hypoxanthine. Of these was only urate indicated to be the inducer of uricase formation, and the difference in the quantity of uricase produced was found to be based on the duration of enzyme formation. The rate of uricase formation was essentially identical regardless of the purine bases supplied to cells.

Allantoin was accumulated in medium in remarkably different manners depending on the purine bases, which suggested the diversity in the mode of generation of urate in cells. Urate was generated at the slowest rate in the cells incubated with hypoxanthine, although the largest amount of uricase was produced, However, urate supplied to cells at the same rate but from medium failed to support the enzyme formation when the activity increased to a certain level. In order that the same amount of uricase was produced by the cells incubated with the different purine bases, the initial concentration of the purine bases should be raised so that they could remain in medium for the same incubation time.

Intracellular compartmentalization that might segregate endogenous and exogenous urate and might cause the difference in “effeciency” of these urate molecules as the inducer of uricase formation has been discussed.  相似文献   

6.
Production of uricase (urate oxidase, EC 1.7.3.3) by n-alkane-utilizing Candida tropicalis pK233 was studied. Although the yeast showed very low enzyme productivity under growing conditions on glucose or an n-alkane mixture (C10 to C13) (less than 2 U/g of dry cells), enzyme formation was enhanced markedly in an induction medium consisting of potassium phosphate buffer, MgSO4, uric acid, and an n-alkane mixture (47 U/g of dry cells) or glucose (21 U/g of dry cells). Of the carbon sources tested, the n-alkane mixture was the most suitable for enzyme production. Appropriate aeration also stimulated uricase formation. In addition to uric acid, xanthine, guanine, adenine, and hypoxanthine were also effective for inducing uricase. Under optimum conditions, the maximum yield of the enzyme was 91 U/g of dry cells. Uricase thus induced was localized in the microbodies of the yeast.  相似文献   

7.
Production of uricase (urate oxidase, EC 1.7.3.3) by n-alkane-utilizing Candida tropicalis pK233 was studied. Although the yeast showed very low enzyme productivity under growing conditions on glucose or an n-alkane mixture (C10 to C13) (less than 2 U/g of dry cells), enzyme formation was enhanced markedly in an induction medium consisting of potassium phosphate buffer, MgSO4, uric acid, and an n-alkane mixture (47 U/g of dry cells) or glucose (21 U/g of dry cells). Of the carbon sources tested, the n-alkane mixture was the most suitable for enzyme production. Appropriate aeration also stimulated uricase formation. In addition to uric acid, xanthine, guanine, adenine, and hypoxanthine were also effective for inducing uricase. Under optimum conditions, the maximum yield of the enzyme was 91 U/g of dry cells. Uricase thus induced was localized in the microbodies of the yeast.  相似文献   

8.
Rat renal proximal tubule cell membranes have been reported to contain uricase-like proteins that function as electrogenic urate transporters. Although uricase, per se, has only been detected within peroxisomes in rat liver (where it functions as an oxidative enzyme) this protein has been shown to function as a urate transport protein when inserted into liposomes. Since both the uricase-like renal protein and hepatic uricase can transport urate, reconstitution studies were performed to further characterize the mechanism by which uricase may function as a transport protein. Ion channel activity was evaluated in planar lipid bilayers before and after fusion of uricase-containing proteoliposomes. In the presence of symmetrical solutions of urate and KCl, but absence of uricase, no current was generated when the voltage was ramped between ±100 mV. Following fusion of uricase with the bilayer, single channel activity was evident: the reconstituted channel rectified with a mean slope conductance of 8 pS, displayed voltage sensitivity, and demonstrated a marked selectivity for urate relative to K+ and Cl. The channel was more selective to oxonate, an inhibitor of both enzymatic uricase activity and urate transport, than urate and it was equally selective to urate and pyrazinoate, an inhibitor of urate transport. With time, pyrazinoate blocked both its own movement and the movement of urate through the channel. Channel activity was also blocked by the IgG fraction of a polyclonal antibody to affinity purified pig liver uricase. These studies demonstrate that a highly selective, voltage dependent organic anion channel is formed when a purified preparation of uricase is reconstituted in lipid bilayers.This work was supported in part by the G. Harold and Leila Y. Mathers Charitable Foundation (E.L.P. and R.D.L.), the Irma T. Hirschl Trust (R.D.L.), National Institutes of Health grant DK08419 (B.A.K.) and a Grant-in-Aid from the American Heart Association, N.Y.C. Affiliate (R.G.A.).  相似文献   

9.
Summary Expression of uncase (urate oxidase) fromChlamydomonas reinhardtii has been investigated by using specific polyclonal antibodies. By Western blot analyses performed under nondenaturing conditions, a 124 kDa protein band corresponding to active uricase was detected in protein extracts from cells cultured with urate or nitrogen-starved cells. This protein band was absent in cells cultured with ammonium. Besides the 124 kDa band, the antibodies also reacted with a massive protein band, with an apparent molecular mass of 500 kDa, that was detected in all nutritional conditions assayed. In vitro, inactive uricase from cells grown with ammonium was activated by incubation in presence of urate. The appearance of uricase activity in vitro coincided with a decrease of the 500 kDa protein and an increase of the 124 kDa band corresponding to the active enzyme. We suggest that a posttranslational regulation of uricase synthesis takes place inC. reinhardtii, and that urate may be responsible for the assembly or maturation of inactive precursors to form the active uricase.  相似文献   

10.
Uricase (urate: oxygen oxidoreductase; EC 1.7.3.3) from the rust Puccinia recondita was purified to electrophoretic homogeneity. Preparations with a specific activity of 8.4 U/mg were used for characterization of the enzyme, which showed a strong similarity to other plant and fungal urate oxidases. The enzyme had a pH optimum of 9.0, a K m of 35 μM for urate, and it was inhibited only by oxonate and xanthine. A molecular mass of 152 kDa was estimated for the native protein. SDS-PAGE analysis revealed a striking difference to most urate oxidases, since two different-sized subunits were detected. These results suggest that P. recondita uricase is a tetramer with two types of subunits. Received: 21 February 2001 / Accepted: 30 July 2001  相似文献   

11.
Studies on the Physiology of Bacillus fastidiosus   总被引:2,自引:2,他引:2       下载免费PDF全文
Bacillus fastidiosus was grown in a minimal medium that contained uric acid or allantoin, aerated by vigorous stirring. A constant, optimum pH of 7.4 was maintained by controlled addition of sulfuric acid. Washed cells converted both urate and allantoin into carbon dioxide and ammonia, simultaneously assimilating part of the available carbon and nitrogen. Urate oxidase (formerly called uricase) was present in extracts from urate-grown but not allantoin-grown cells. The formation of urate oxidase was apparently induced by urate. Urea was detected as an intermediate in some but not all of these experiments. However, the high urease activity observed in cell-free extracts may have prevented accumulation of urea in many of the experiments. The presence of glyoxylate carboligase and tartronic semialdehyde reductase activities indicates that the glycerate pathway may be involved in urate and allantoin catabolism in this organism.  相似文献   

12.
This study investigated the sites of urate synthesis and catabolism in the gecarcinid land crab Gecarcoidea natalis by assaying spongy connective tissue, midgut gland, muscle and gill for xanthine oxidoreductase, the last enzyme involved in urate synthesis, and uricase and urease, the first and last enzymes involved in urate catabolism. The spongy connective tissue and midgut gland of the G. natalis contained activities of xanthine oxidoreductase and were considered to be sites of urate synthesis. The midgut gland had a high activity of xanthine oxidoreductase [(58.87±4.6 (SE) nmol urate produced g-1 wet wt. tissue min-1], 2.7 times the xanthine oxidoreductase activity contained within the spongy connective tissue, and was thought to be the main site of urate synthesis. Xanthine dehydrogenase (EC 1.1.1.204) was the only form of xanthine oxidoreductase detected within the tissues. Its presence means that the cost of synthesising urate de novo is relatively small (between 1 and 3 ATP). Uricase (EC 1.7.3.3) and urease (EC 3.5.1.5) activities were present in the tissues of G. natalis. Spongy connective tissue contained the highest activities of uricase [48.44±4.29 (SE) nmol urate consumed g-1 wet wt. tissue min-1] while the highest activities of urease [365.31±37.21 (SE) nmol urate consumed g-1 wet wt tissue min-1] were contained within the gills. From this evidence it is clear that G. natalis possesses the uricolytic pathway and hence the ability to catabolise urate, and urate catabolism is begun at the site of urate storage, the spongy connective tissue, and is completed at the gills. As the gills are the site of ammonia excretion in this species the ammonia produced from the catabolism of urate is probably excreted. The urate deposits within the body of G. natalis may be involved in temporary storage of nitrogenous wastes.  相似文献   

13.
Uricase (urate: oxygen oxidoreductase, EC 1.7.3.3), an enzyme belonging to the class of oxidoreductases, catalyzes the enzymatic oxidation of uric acid to allantoin and finds a wide variety of application as therapeutic and clinical reagent. In this study, uricase production ability of the bacterial strains isolated from deep litter poultry soil is investigated. The strain with maximum extracellular uricase production capability was identified as Xanthomonas fuscans subsp. aurantifolii based on 16S rRNA sequencing. Effect of various carbon and nitrogen sources on uricase productivity was investigated. The uricase production for this strain was optimized using statistically based experimental designs and resulted in uricase activity of 306 U/L, which is 2 times higher than initial uricase activity. Two-step purification, such as ammonium sulfate precipitation and aqueous two-phase system, was carried out and a twofold increase in yield and specific activity was observed.  相似文献   

14.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5-diethoxyphosphoryl-5-methyl-pyrroline-N-oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

15.
The potassium contents of beta-cell-rich pancreatic islets from ob/ob-mice were measured with an integrating flame photometer. After exposure to 5 mM glucose islet potassium increased by 17 +/- 2%, no additional effect being seen with increase of the sugar to 20 mM. Glucose counteracted the loss of islet potassium obtained on removal of the ion from the incubation medium, halving the initial disappearance rate. Whereas the effect of glucose in suppressing the mobilisation of potassium was mimicked by tolbutamide and quinine, it was antagonized by diazoxide. It is concluded that the glucose interference with the outward transport of K+ is sufficient to raise the beta-cell content of the ion.  相似文献   

16.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5‐diethoxyphosphoryl‐5‐methyl‐pyrroline‐N‐oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

17.
Ultrastructural localization of uricase (urate: oxygen oxidoreductase, E.C.1.7.3.3.) in rat liver parenchymal cells has been studied with the cerium technique. The cerous ions react with H2O2 generated by the activity of the enzyme in the presence of urate, forming the electron-dense reaction product of cerous perhydroxide. Tissue fixation is carried out by perfusion for 5 min with a low concentration (0.25%) of glutaraldehyde. Since in a biochemical assay it was found that the activity of uricase determined in Trismaleate buffer is substantially weaker than in the Pipes buffer, the classical medium of Briggs et al. (6) was modified, and the latter buffer was substituted for the Trismaleate. Vibratome sectons are incubated at 37 degrees C for 60 min in 0.1 M Pipes buffer, pH 7.8, containing 3 mM cerium chloride and 0.1 mM sodium urate. Under these conditions, the reaction product is localized in the crystalline cores of hepatic peroxisomes. The intensity of the staining is dependent on the concentration of the substrate and the incubation time. In control preparations incubated without urate or with 2,6,8-trichloropurine, a specific inhibitor of uricase, staining is almost completely abolished. In sections incubated with 5 mM cerium and 0.1 mM sodium urate, fine granules with a distribution corresponding to peroxisomes are also visible at the light microscopic level. This latter observation is invaluable for correlative light and electron microscopic studies.  相似文献   

18.
Recombinant protein, designated UAT, prepared from a cloned rat renal cDNA library functions as a selective voltage-sensitive urate transporter/channel when fused with lipid bilayers. Since we previously suggested that UAT may represent the mammalian electrogenic urate transporter, UAT has been functionally characterized in the presence and absence of potential channel blockers, several of which are known to block mammalian electrogenic urate transport. Two substrates, oxonate (a competitive uricase inhibitor) and pyrazinoate, that inhibit renal electrogenic urate transport also block UAT activity. Of note, oxonate selectively blocks from the cytoplasmic side of the channel while pyrazinoate only blocks from the channel's extracellular face. Like oxonate, anti-uricase (an electrogenic transport inhibitor) also selectively blocks channel activity from the cytoplasmic side. Adenosine blocks from the extracellular side exclusively while xanthine blocks from both sides. These effects are consistent with newly identified regions of homology to uricase and the adenosine A1/A3 receptor in UAT and localize these homologous regions to the cytoplasmic and extracellular faces of UAT, respectively. Additionally, computer analyses identified four putative α-helical transmembrane domains, two β sheets, and blocks of homology to the E and B loops of aquaporin-1 within UAT. The experimental observations substantiate our proposal that UAT is the molecular representation of the renal electrogenic urate transporter and, in conjunction with computer algorithms, suggest a possible molecular structure for this unique channel. Received: 13 October 1998/Revised: 28 January 1999  相似文献   

19.
Summary One hundred and sixty-five strains of microorganisms with the ability to grow in a medium containing uric acid as a major source of nitrogen were isolated from soil samples during a screening program. Among them, a zygomycete fungus with well-developed columellae was recognized to produce high levels of the enzyme in a short time. Classification of the isolated fungus was carried out according to the morphological and culture characteristics of the organism, and it was identified as Mucor hiemalis. The fungus was able to produce an intracellular urate oxidase in a fermentation medium mainly containing uric acid. Optimized composition of the medium consisted of (l−1 of distilled water) uric acid, 7.0 g; maltose, 6.0 g; Vogel stock solution, 20 and 1 ml of 0.5 M copper sulphate. The optimum pH and temperature for uricase production in the optimized medium were pH 6 and 30 °C, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号