首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serotype-specific carbohydrate moiety of Streptococcus mutans was isolated by mild degradation of purified cell walls with a cell-wall lytic enzyme. Cell walls of serotype g S. mutans strain 6715 were digested with M1 enzyme, an endo-N-acetylmuramidase purified from culture supernatants of Streptomyces globisporus strain 1829. The enzyme lysate of the cell walls was applied to a CM Sephadex C-25 column to remove the M1 enzyme from the cell wall lysate and then subjected to Sephadex G-100 column chromatography. Carbohydrate antigens with serotype g specificity, designated M1g, and a peptidoglycan—polysaccharide complex lacking serotype specificity (M1PG) were separated. Purified serotype g antigen was also obtained by autoclaving the S. mutans 6715 whole cells in saline at 120 C for 30 min. The extract was applied to a DEAE Sephadex A-25 column to remove nucleic acids and teichoic acids. The unbound peak fraction was concentrated and re-chromatographed on a Bio-Gel P-100 column. The void volume fraction contained serotype g carbohydrate and was designated RRg antigen. M1g and RRg antigens formed a band of identity with anti-serotype g serum by immunodiffusion. These antigens were composed mainly of galactose, glucose, and rhamnose at an approximate weight ratio of 8 : 4 : 1, while constituent sugars of M1PG consisted of rhamnose and glucose, with no detectable galactose. M1g also contained peptidoglycan residues other than threonine, an interpeptide bridge component of the native cell wall peptidoglycan. Marked inhibition of the quantitative precipitin reaction between M1g and anti-serotype g serum was obtained with melibiose and galactose, which suggests that the immunodeterminant of the serotype g carbohydrate is an α-linked galactose-glucose terminal linkage.  相似文献   

2.
A lytic enzyme which was capable of lysing cells of Streptococcus mutans was purified from the culture filtrate of Streplomyces griseus H–402 by Amberlite CG–50 treatment, CM-cellulose and hydroxylapatite column chromatographies, and Sephadex G–150 gelfiltration. The lytic enzyme was obtained in a crystalline form which was homogeneous in polyacrylamide gel electrophoresis. The molecular weight was estimated to be 2×104 by the thin-layer gel-filtration method on Sephadex G–75, and 2.3 × 104 by the method of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme was found to be a N-acetylmuramidase whose activity was lost by N-bromosuccinimide as an inhibitor.  相似文献   

3.
A bacterium R–4 which produces a novel type of lytic enzyme which lyses fungal and yeast cell walls was isolated from the air and was identified to belong to the genus Bacillus.

Production of the enzyme appeared to require a high concentration of nitrogen source in medium. No inducing substance was needed for the enzyme production.

A crude preparation of the enzyme was used to characterize the lytic activity. From the lytic spectrum, the enzyme seemed to have the highest activity toward the cell walls of species in the genus Rhizopus among various fungi and yeasts tested, A proteolytic activity was shown to be parallel with the lytic activity. The lytic activity was also accompanied with the liberation of reducing sugars from Rhizopus cell wall, but no activity on some known carbohydrates tested was detected in the preparation.  相似文献   

4.
The susceptibility to a cell wall lytic L-11 enzyme from Flavobacterium sp. and the quantitative and/or qualitative composition of the cell walls of some strains of cariogenic Streptococcus mutans and a non-cariogenic strain of Streptococcus mitis were determined. The purified cell walls of S. mutans strains HS-1 (serotype a), BHT (b), NCTC10449 (c), C67-1 (c), C67-25 (c), OMZ 176 (d), MT703 (e), MT557 (f), OMZ65 (g), and AHT (g), and S. mitis CHT contained glutamic acid, alanine, and lysine as well as muramic acid and glucosamine as a peptidoglycan component. Besides these amino acids, significant amounts of threonine were detected in strains HS-1, OMZ65, and AHT cell walls, and considerable amounts of aspartic acid and/or threonine as well as several other amino acids in OMZ176, OMZ65, and CHT cell walls. Rhamnose was a common special component of the cell walls of S. mutans strains BHT, NCTC10449, MT703, B2 (e), MT557, and AHT, and S. mitis CHT. An additional sugar component, glucose, was detected in the cell walls of all of these strains except BHT, and galactose was found in BHT, AHT, and CHT cell walls. Galactosamine was present in S. mitis CHT cell walls. Varying amounts of phosphorus were detected in the cell walls of all the strains examined. The cell walls of all these streptococcal strains except MT703, 6715, and AHT were susceptible to the lytic action of the L-11 enzyme to various extents. No consistent relationship was observed between the amino acid and sugar composition of these cell walls and their susceptibility to the L-11 enzyme. The chemical composition of these cell walls is discussed in terms of the serological classification of S. mutans.  相似文献   

5.
The effects of hen egg white lysozyme and the inorganic salt sodium thiocyanate on the integrity of Streptococcus mutans BHT were studied by transmission electron microscopy. Both control cells and cells exposed to NaSCN possessed thick outer cell walls and densely staining inner cell walls juxtaposed to the plasma membranes. In the presence of NaSCN, however, the S. mutans BHT nucleoid was coagulated into thick electron-dense filaments. Exposure of S. mutans BHT to 150 μg of hen egg white lysozyme per ml resulted in the progressive destruction of both the cell walls and the plasma membranes. The enzyme appeared to affect the region of the cell wall septum, and exposure to 150 μg of hen egg white lysozyme per ml for as short a time as 10 min resulted in visible morphological cell wall alterations. At 30 min, ultrastructural observations revealed that the majority of the cells were in the process of expelling a portion of their cytoplasmic contents from the septal and other regions of the cells at the time of fixation. After 3 h of incubation in the presence of this high lysozyme concentration, gelled protoplasmic masses, which were free from the cells, were evident. In addition, extensive damage to the outer and inner cell walls and to the plasma membranes was apparent, although the cells maintained their shape. On some areas of the cell surface, the outer cell wall and plasma membrane were completely absent, whereas at other locations the outer cell wall was either split away from the inner cell wall and plasma membrane or distended from an area free of inner cell wall and plasma membrane. Upon addition of NaSCN to the hen egg white lysozyme-treated cells, both the gelled protoplasmic masses and the damaged cells exhibited an exploded appearance and existed as membrane ghosts, cell wall fragments, or dense aggregates of cytoplasmic components. The effects of a low lysozyme concentration (22.5 μg/ml) on S. mutans morphology were less pronounced at short incubation times (i.e., 10 and 30 min) than those that were observed with a high enzyme concentration; however, breaks in the cell walls and dissolution of the plasma membranes with resulting cell lysis were visible after a prolonged (3-h) incubation and after subsequent addition of NaSCN.  相似文献   

6.
Isolated cell walls of Clostridium botulinum type A strain 190L released an autolysin during autolysis of the cell walls. The autolysin was isolated from the cell walls, and partially purified 18.6-fold by ammonium sulfate precipitation, chromatography on DEAE-cellulose and gel filtration through Sephadex G-100. The purified preparation of the autolysin showed 2 major and 2 minor protein bands on Polyacrylamide gel electrophoresis. Some properties of the autolysin were examined using SDS-treated cell walls of the organisms as a substrate. The autolysin was active over a pH range of 6 to 8, with a maximum near pH 6.8. The lytic activity was stimulated by 10?4 M each of Co++, Mg++ and Ca++ in the order, whereas it was inhibited markedly by Cu++. Mercaptoethanol (10?4–10?3 M) significantly activated the lytic action. Trypsin and nagarse (10 μg/ml) also stimulated the lytic activity. The lytic spectrum of the autolysin toward the SDS-treated cell walls obtained from various types of C. botulinum and C. perfringens indicated a relatively high specificity. After treatment with hot formamide the cell walls of C. botulinum increased in susceptibility to the autolysin.  相似文献   

7.
Stem tissues from different internodes of 4–6 week-old Zinnia elegans cv. Envy plants were sectioned and stained with chromogenic substrates previously used in studies of laccases (p-diphenol:O2 oxidoreductases) isolated from tree tissues. The pattern of color development found when stem sections were stained in the presence and absence of H2O2 suggested that p-diphenol:O2 oxidoreductase activity was tightly correlated spatially and temporally with the lignification of secondary cell walls in developing primary xylem. The correlation between this laccase-like phenoloxidase activity and lignification appeared tighter than that between lignification and peroxidases stained using the same substrates. Zymogram analysis of the phenoloxidase activities catalyzed by enzymes that were not boiled prior to separation by SDS—PAGE suggested that a single enzyme was predominantly responsible for the laccase-like phenoloxidase activity in Zinnia stems. Some of this enzyme was released from cell wall residue by washing with high ionic strength buffer; however, substantial amounts of the enzyme could only be recovered after treatment of the residue with cell wall-degrading enzymes. This phenoloxidase appears to share significant characteristics with the coniferyl alcohol oxidase isolated from developing secondary xylem in pines, which suggests that such enzymes may be widespread in vascular plants.  相似文献   

8.
Biological control experiments were conducted with the lytic enzyme-producing fungusPenicillium purpurogenumagainst the plant pathogensMonilinia laxaandFusarium oxysporumf. sp.lycopersici.Applications ofP. purpurogenumto peach shoots previously inoculated withM. laxareduced lesion length and extent of pathogen colonization of shoots by 90 and 80% (P ≤ 0.05), respectively, comparable to the level of disease control obtained with the fungicide captan. Disease severity in tomato plants inoculated withF. oxysporumf. sp.lycopersiciwas decreased by 30% (P ≤ 0.05) with the biological treatment. The fungusP. purpurogenumproduced β-1,3-glucanase and chitinase activities in liquid culture that were inducible by cell walls and live mycelium ofM. laxabut not ofF. oxysporumf. sp.lycopersici.Crude filtrates or crude enzyme preparations ofP. purpurogenumcultures with lytic enzyme activities produced lysis of hyphae and spores ofM. laxaandF. oxysporumf. sp.lycopersici.These lytic effects were strong inM. laxaand ended in complete dissolution of mycelium. The induction of lytic enzymes byM. laxaand the effects of lytic enzymes on mycelia of the pathogens in relation to the different degrees of biological control obtained are discussed.  相似文献   

9.
Two lytic enzymes (enzyme I and enzyme II) that lysed Micrococcus lysodeikticus were isolated from the crude extract of Polysphondylium pallidum myxamoebae grown in the presence of Klebsiella aerogenes by precipitation with protamine sulfate and by chromatography on DEAE-Sepharose CL-6B. Enzyme I was further purified by gel filtration on a Superose12 column, and enzyme II by chromatography on a MonoQ HR 5/5 column and gel filtration on a Superose12 column. Enzyme I was a basic protein, while enzyme II was acidic. The molecular weights of enzyme I and II were about 14,000 and 22,000, respectively by SDS-polyacrylamide gel electrophoresis. Optimum pHs for the activity were 5.0 for enzyme I and between 3.5 and 4.0 for enzyme II. The maximum activity of enzyme I and II was obtained at 65°C and 45°C to 55°C and at ionic strength of 0.0075 to 0.03 and 0.06, respectively. Both enzymes cleaved the glycosidic bond of β(1,4)-N-acetylmuramyl-acetylglucosamine of the cell wall peptidoglycan of Micrococcus lysodeikticus. These results indicate that the two lytic enzymes of Polysphondylium pallidum myxamoebae are N-acetylmuramidases.  相似文献   

10.
A potent fibrinolytic enzyme-producing bacterium was isolated from the traditional Korean condiment Chungkook-jang and identified as Bacillus vallismortis Ace02. The extracellular fibrinolytic enzyme was purified with a 18% recovery of activity from supernatant cultures using CM-Sepharose column chromatography and Sephacryl S-200 gel filtration. The specific activity of the purified enzyme was 757 kFU mg−1. Its molecular mass was about 28 kDa and the initial amino acids of the N-terminal sequence were AQSVPYGVSQ. The full amino acid sequence of fibrinolytic enzyme Ace02 corresponded with bacteriolytic enzyme, L27, from Bacillus licheniformis, which has strong lytic activity against Streptococcus mutans, a major causative strain of dental caries. This suggests that the purified enzyme should be used for prevention of dental caries as well as being an effective thrombolytic agent.  相似文献   

11.
Dodecyl glycerol inhibits the synthesis of the peptidoglycans ofStreptococcus faecium ATCC 9790 andStreptococcus mutans BHT. This metabolic regulation represents the second known mode by which dodecyl glycerol expresses antibacterial activity. The first mode of action of dodecyl glycerol was shown to stimulate autolysin activity which degrades cell-wall peptidoglycan (Ved HS, Gustow E, Mahadevan V and Pieringer RA, 1984, J. Biol. Chem.259, 8115–8121).  相似文献   

12.
Antimicrobial Activity of Propolis on Oral Microorganisms   总被引:8,自引:0,他引:8  
Formation of dental caries is caused by the colonization and accumulation of oral microorganisms and extracellular polysaccharides that are synthesized from sucrose by glucosyltransferase of Streptococcus mutans. The production of glucosyltransferase from oral microorganisms was attempted, and it was found that Streptococcus mutans produced highest activity of the enzyme. Ethanolic extracts of propolis (EEP) were examined whether EEP inhibit the enzyme activity and growth of the bacteria or not. All EEP from various regions in Brazil inhibited both glucosyltransferase activity and growth of S. mutans, but one of the propolis from Rio Grande do Sul (RS2) demonstrated the highest inhibition of the enzyme activity and growth of the bacteria. It was also found that propolis (RS2) contained the highest concentrations of pinocembrin and galangin. Received: 8 June 1997 / Accepted: 7 July 1997  相似文献   

13.
The enzymatic properties of P2-2 enzyme were determined by using cells of M. radiodurans. The enzyme was: most active at 60°C incubation temperature, stable at 40°C in neutral buffer, and inactivated by heating at 80°C for 15min. Maximal lytic activity occurred at pH 8.5 in Tris-HCl buffer. The range of enzyme stability was between pH 5.5 and 8. Bivalent metal ions, p-chloromercuribenzoate and monoiodo acetate inhibited lytic activity. The molecular weight was estimated to be 16,000 daltons by gel filtration on Sephadex G-75. The enzymatic digestion of peptidoglycans from the cell walls of M. radiodurans and M. lysodeikticus liberated free amino groups, but neither reducing groups nor N-acetylhexosamine, indicating that the enzyme was an endopeptidase. From analysis of the N-terminal amino acids of the digests, it is suggested that the P2-2 enzyme cleaves the peptide bond at the carboxyl group of D-alanine in peptidoglycan.  相似文献   

14.
The crude enzyme fraction of precipitates resulting from the addition of 70% alcohol to the culture filtrate of A. lunatus was separated by CM-Sephadex and Sephadex G-75 chromatography into 13 fractions having lytic activity for M. radiodurans, M. lysodeikticus and P. radiora. Five of the fractions showed similar lytic activity spectra, but the other fractions were separated by the specificities of their lytic activities. This result indicates that the wide lytic spectrum of the crude enzyme against microorganisms is attributable to the action of many lytic enzymes. All fractions, except for P2-2 fraction (designated as the P2-2. enzyme), contained at least two proteins as determined by disc gel electrophoresis. The P2-2 enzyme was purified 34-fold by rechromatography on Sephadex G-75, and appeared to be homogeneous on disc gel electrophoresis. The enzyme was able to lyse intact cells of M. radiodurans and M. lysodeikticus without detergent, and those of P. radiora with detergent, but was not able to digest casein.  相似文献   

15.
The cell walls from all 21 species of gram-positive bacteria examined, except lysozyme-susceptible Micrococcus lysodeikticus (NCTC 2665) and lysozyme-resistant Staphylococcus epidermidis (ATCC 155), were found to be definitely adjuvant-active in both stimulation of increased serum antibody levels and induction of delayed-type hypersensitivity to ovalbumin when administered to guinea-pigs as water-in-oil emulsions. Using various cell wall lytic enzymes, the immunoadjuvant principles were solubilized with full retention of the adjuvant activities from walls of Staphylococcus aureus (Copenhagen), Streptococcus pyogens (group A, type 6; S43/100), Streptococcus salivarius (IFO 3350), Streptococcus faecalis (IFO 12580), Streptococcus mutans (BHT), Lactobacillus plantarum (ATCC 8014), Bacillus megaterium (IFO 12068), Corynebacterium diphtheriae (Park-Williams No. 8), Mycobacterium smegmatis, and Actinomyces viscous (ATCC 15987). Evidence was obtained that the non-peptidoglycan portion of the cell walls is not essential for manifestation of immunoadjuvancy.  相似文献   

16.
A lytic enzyme was isolated from phage HM 7-induced lysate of Clostridium saccharoperbutylacetonicum, and purified about 200-fold by precipitation with ammonium sulfate, gel filtration with Sephadex G–75 and ampholine isoelectric focusing. The purified lytic enzyme had an apparent homogeneity on disc-electrophoresis, and the character of acidic protein showing isoelectric point at pH 4.0. The molecular weight of lytic enzyme was estimated to be about 100,000 from the result of SDS-polyacrylamide gel electrophoresis. The optimum pH for the lytic enzyme activity was 6.5. Maximum activity occurred at 30 to 35°C, and at the ionic strength of 0.04 m or above. The lytic enzyme activity was stimulated about 140% by 10?3 m EDTA. The lytic enzyme lysed the living cells, but it had a narrow specificity which was restricted to a certain species of Clostridium such as Cl. saccharoperbutylacetonicum, Cl. butyricum, Cl. botulinum, Cl. sporogenes, and Cl. thiaminolyticum.  相似文献   

17.
Lysozyme (mucopeptide N-acetylmuramylhydrolase EC 3.2.1.17) activity has been found in the hemolymph, digestive gland, and headfoot extracts of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. Partial purification of the bacteriolytic enzyme was attained by gel chromatography on Sephacryl S-200 and active lytic fractions were concentrated by Amicon filtration. The properties of the lytic enzymes from the three tissue extracts were identical. Enzyme activity was determined by the rate of lysis of cell wall suspension of Micrococcus lysodeikticus. Lysis of the cell walls was accompanied by a release of reducing sugar groups and N-acetylhexosamines. The enzyme was stable to heating at 100 C for 2 min and had an optimum activity at pH 4.5 to 5.0 in 0.066 M glycylglycine buffer. Low concentrations (5 mM) of NaCl, KCl, and LiCl increased the activity of the enzyme, whereas high concentrations (25 mM) of the same ions caused about 50% inhibition of the enzyme activity. MgCl2 and CaCl2 also inhibited the enzyme activity. Addition of 1 mM EDTA or EGTA resulted in about a twofold increase in enzyme activity. Double reciprocal plots of enzyme velocities and substrate concentrations yielded an apparent Michaelis-Menten constant (Km) of 0.05 ± 0.01 mg/ml of M. lysodeikticus.  相似文献   

18.
In this study, the transglucosylation potential of six sucrose phosphorylase (SP) enzymes has been compared using eighty putative acceptors from different structural classes. To increase the solubility of hydrophobic acceptors, the addition of various co-solvents was first evaluated. All enzymes were found to retain at least 50% of their activity in 25% dimethylsulfoxide, with the enzymes from Bifidobacterium adolescentis and Streptococcus mutans being the most stable. Screening of the enzymes’ specificity then revealed that the vast majority of acceptors are transglucosylated very slowly by SP, at a rate that is comparable to the contaminating hydrolytic reaction. The enzyme from S. mutans displayed the narrowest acceptor specificity and the one from Leuconostoc mesenteroides NRRL B1355 the broadest. However, high activity could only be detected on l-sorbose and l-arabinose, besides the native acceptors d-fructose and phosphate. Improving the affinity for alternative acceptors by means of enzyme engineering will, therefore, be a major challenge for the commercial exploitation of the transglucosylation potential of sucrose phosphorylase.  相似文献   

19.
Streptococcus oralis contains an enzyme that can remove a limited amount of choline residues when tested on purified cell walls. This activity has been identified as an esterase that exhibits some biochemical properties similar to those previously found for several lytic enzymes of S. pneumoniae and its bacteriophages.  相似文献   

20.
The purified red yeast cell wall lytic enzyme of Penicillium lilacinum No. 2093 has a potent saccharifying activity against cell walls, but the living cell lytic activity of it is considerably lower than that of the culture filtrate. Therefore, the living cell lytic factors in the culture filtrate were examined. The alkaline protease of Pen. lilacinum played an important role for living cell lysis. The synergistic effect on living cell lysis was also detected, when acid proteases from various origins were combined with the cell wall lytic enzyme. These results indicated that the protein layers of red yeast cell surface inhibited the action of a glycanase,cell wall lytic enzyme, and the protein molecule contributed to retain the rigid structure of the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号