首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the nonprotein acidic amino acid fraction of Phaseolus angularis W. F. Wight, Azuki bean of commerce in Japan, a new γ-glutamyl peptide has been isolated by ion exchange techniques. This compound has been shown to be γ-l-glutamyl-l-β-phenyl-β-alanine. The characterization is based on elementary analysis, hydrolysis with hydrochloric acid or Amber lite CG-120 resin in H+ form, ultraviolet and infrared spectra, and the reaction of fluorodinitrobenzene with the peptide. The glutamic acid separated from the hydroiysates was decarboxylated to γ-aminobutyric acid with l-glutamic acid decarboxylase prepared from squash. β-Phenyl-β-alanine component in the peptide had the same infrared spectrum, elementary analysis, melting point, optical rotation and behavior in paper chromatography as authentic l-β-phenyl-β-alanine.  相似文献   

2.
Syntheses of various γ-glutamylpeptides were examined taking use of the highly purified γ-glutamylcysteine synthetase from Proteus mirabilis. The accumulation of each peptide was measured after long time incubation, and good formation was observed in the synthesis of peptides of following amino acids, l-cysteine, l-α-aminobutyrate, l-serine, l-homoserine, glycine, l-alanine, l-norvaline, l-lysine, l-threonine, taurine and l-valine. Peptide syntheses were confirmed by analyses of the component amino acids, after hydrolysis of the peptides.

The structure of the glutamylpeptides, especially the peptide-linkage at the γ-carbonyl residue of l-glutamate, was determined by mass spectrometry of the N-trifluoroacetyl methylester derivatives of the glutamylpeptides. Enzymatic synthesis of γ-glutamyl-l-α-aminobutyrate was also confirmed by PMR spectrometry in the comparison with chemically synthesized compound.  相似文献   

3.
α- and γ-l-Glutamyl dipeptides of l-β-phenyl-β-alanine are synthesized for the first time from l-glutamic acid and l-β-phenyl-β-alanine. In addition, the preparations and the properties of new intermediates, that is, l-β-phenyl-β-alanine benzylester p-toluenesulfonate and the N-carbobenzyloxy-α- and γ-dipeptide benzylesters, are described. Further proof of the structure previously proposed for the naturally occurring peptide is obtained by a critical comparison of the isolated and synthetic materials by various physical and chemical methods.  相似文献   

4.
An Enzyme Hydrolyzing l-Theanine in Tea Leaves   总被引:1,自引:0,他引:1  
Theanine hydrolase activity in tea leaves was assayed by measuring enzymatically released ethylamine from l-theanine. The o-phthalaldehyde derivative of ethylamine was measured by reverse phase HPLC recorded with a spectrofluorometric detector.

Theanine hydrolase activity was purified about 4.6-fold by DEAE-cellulose column chromatography. Although this active fraction also had glutaminase activity, the yield of the glutaminase activity was about 50% of that of theanine hydrolytic activity. The theanine hydrolytic activity was inhibited by acidic amino acid and l-alanine, and stimulated by l-malic acid. The purified enzyme solution hydrolyzed not only theanine but also γ-glutamylmethylamide, γ-glutamyl-n-propylamide, γ-glutamyl-n-butylamide, γ-glutamyl-iso-butylamide, and γ-glutamyl-n-amylamide, which were synthesized from l-pyroglutamic acid and corresponding alkylamines. However, N-methylpropionamide and N-ethylpropionamide were not hydrolyzed. The theanine hydrolase activity and glutaminase in tea leaves showed the same pH optimum (8.5).

The activity of theanine hydrolase in tea leaves increased during the first lOhr after plucking but then decreased gradually, while that of glutaminase decreased constantly and was almost lost  相似文献   

5.
(1) Both glutaminases A and B of Pseudomonas aeruginosa are inactivated by urea and guanidine hydrochloride, and the activities are partially restored by removal of the denaturants, while sodium lauryl sulfate denatured irreversibly the isozymes. (2) Glutaminase A consists of 4 identical subunits (mol. wt, 35,000) and B is composed of one polypeptide chain (mol. wt., 67,000). (3) Glutaminase A, which catalyzes the hydrolysis and also the hydroxylaminolysis of L and D isomers of glutamine and asparagine, does not act on γ-N-substituted glutamine e.g., γ-glutamylhydrazide. Some l- and d-γ-glutamyl derivatives, e.g., l- and d-γ-glutamyl-hydrazide, l- and d-γ-glutamylmethylester, and l-γ-glutamyl-l-alanine are substrates for glutaminase B, which does not catalyze the hydrolysis and hydroxylaminolysis of asparagine. α-Amino adipamic acid and α-amino substituted amino acids are inert for both the isozymes. (4) The acylation step is rate-limiting in the catalytic reactions by both the isozymes.  相似文献   

6.
The acylated, amidated and esterified derivatives of N-acetylglucosaminyl-α(1 → 4)-N-acetylmuramyl tri- and tetrapeptide were synthesized and examined as to their protective effect on pseudomonal infection in the mouse and pyrogenicity in the rabbit. Modifications of the terminal end function of the peptide moieties in their molecules caused enhancement of resistance to pseudomonal infection and reduction of pyrogenicity. Among the compounds tested, sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide and sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide-(l)-d-alanine were found to be advantageous and conceivably worthwhile for further investigation as immunobiologically active compounds.  相似文献   

7.
To investigate the substrate specificity of β-l-rhamnosidase, the following β-l-rhamnopyranosides were synthesized: 1-(β-l-rhamnopyranosyl)-dl-glycerol (1), methyl β-l-rhamnopyranoside (2), methyl 2-O-(β-l-rhamnopyranosyl)-β-d-glucopyranoside (3) and methyl 2-O-β(β-l-rhamnopyranosyl)-α-l-arabinopyranoside (4). The synthesis of 3 was performed using l-quinovose with neighboring group participation, which lead stereoselectively to the β-l-quinovoside. The 2-OH of the l-quinovo-unit was selectively deblocked, oxidized to the keto group, and then stereoselectively reduced, whereby 3 was produced.  相似文献   

8.
A growth factor (TJF) for a malo-lactic fermentation bacterium has been isolated from tomato juice, and found to be a β-glucoside. The NMR spectra of TJF and its acetate revealed that the glucosyl residue linked to the hydroxyl group at C-2′ or C-4′ of d- or l-pantothenic acid moiety. Then, 2′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (I), 4′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (II) and 4′-O-(β-d-glucopyranosyl)-d(R)-pantothenic acid (II-a) were synthesized, and Il-a and 4′-O-(β-d-glucopyranosyl)-l-pantothenic acid (II-b) were obtained by the optical resolution of the acetate of II. Among the above compounds, II-a was identical with natural TJF regarding to the biological activity, NMR and ORD spectra, and thin-layer chromatography.  相似文献   

9.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

10.
A xyloglucan (MBXG) from the cell walls of etiolated mung bean hypocotyls was characterized by analyzing the fragment oligosaccharides from controlled degradation products of the polymer with acid and enzyme.

Cellobiose, cellotriose and cellotetraose were isolated from the partial acid hydrolyzate of MBXG. Isoprimeverose (6-O-α-d-xylopyranosyl-d-glucopyranose) and a pentasaccharide, α-l-fucosyl-(1 → 2)-β-d-galactosyl-(1 → 2)-α-d-xylosyl-(1 → 6)-β-d-glucosyl-(1 → 4)-d-glucose, were isolated from the hydrolyzate of MBXG with an Asp. oryzae enzyme preparation.  相似文献   

11.
Hepta-O-acetyl-2-0-β-l-quinovopyranosyl-α-d-glucose (VI) and hepta-O-acetyl-2-O-α-l-quinovopyranosyl-β-d-gIucose (VIII) were prepared by the coupling of 2,3,4-tri-O-acetyl-α-l-quinovopyranosyl bromide (IV) with l,3,4,6-tetra-O-acetyl-α-D-glucose (V) in the presence of mercuric cyanide and mercuric bromide in absolute acetonitrile.

Similarly, hepta-O-acetyW-O-α-l-quinovopyranosyl-α-d-galactose (X) and hepta-O-acetyl-2-O-β-L-quinovopyranosyl-α-d-galactose (XI) were prepared by the reaction of IV with 1,3,4,6-tetra-O-acetyl-α-d-galactose (IX).

Removal of the protecting groups of VI, VIII, X and XI afforded the corresponding disaccharides. On treatment with hydrogen bromide, VI, VIII, X and XI gave the corresponding acetobromo derivatives.  相似文献   

12.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   

13.
The structure of latosillan was elucidated by a degradative study and NMR spectral analysis. This revealed that latosillan is a heteroglycan composed of repeating units of the pentasaccharide, →2)-β-d-Man-(1→2)-{β-d-G1CNAC-(1→4)}.-α-l-Rha-(1→4)-α-l-Rha-(1→4)-α-l-Rha-(1→, shown in Fig. 1.  相似文献   

14.
Using a Dowex 50–X2 column and eluting with a 1 mm sodium acetate buffer (pH 2.6), three l-β-aspartamido-carbohydrate (Asn-carbohydrate) fractions have been isolated in 19% yield from the pronase digest of a 7S soybean protein. The Asn-carbohydrates were composed of one asparagine, two glucosamine and seven, eight and nine mannose residues. Further, 1-l-β-aspartamido-2-acetamido-1,2-dideoxy-β-d-glucose (Asn-GlcNAc), which is derived from the protein-carbohydrate linkage, was produced by partial hydrolysis of the Asn-carbohydrates.  相似文献   

15.
Two methyl groups of α-l-glutamyl-α-aminoisobutyric acid which were equivalent in the acidic solution became unequivalent in the aqueous and basic solutions. Such an unequivalence of two methyl groups was not manifested in the cases of γ-l-glutamyl-α-aminoisobutyric acid, α- and γ-l-glutamylisopropylamide, N-glutaryl-α-aminoisobutyric acid and N-glutarylisopropylamine.  相似文献   

16.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

17.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

18.
A glucomannan isolated from konjac flour was hydrolyzed with commercially available crude and purified cellulases. The following oligosaccharides were isolated from the hydrolyzate and identified: (a) 4-O-β-d-mannopyranosyl-d-monnose (b) 4-O-β-d-mannopyranosyl-d-glucose (c) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (d) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (e) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (f) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (g) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (h) 4-O-β-d-glucopyranosyl-d-glucose(cellobiose) (i) 4-O-β-d-glucopyranosyl-d-mannose (epicellobiose) (j) O-β-d-glucopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose. Of these saccharides, (h), (i) and (j) were isolated from the hydrolyzate by purified cellulase, while (g) was isolated from the hydrolyzate by crude cellulase. The others were all present in the hydrolyzates both by crude and by purified cellulases.  相似文献   

19.
γ-l-Glutamyl-l-methioninesulfoxide was isolated from green gram seed. The peptide, isolated from plant material for the first time, was present in large amounts in seeds, but was not detected in commercially obtained etiolated seedlings as was the case with other γ-glutamyl peptides.  相似文献   

20.
The electrophoretically homogeneous glucomannan isolated from konjac flour was composed of d-glucose and d-mannose residues in the approximate ratio of 1: 1.6. Controlled acid hydrolysis gave 4-O-β-d-mannopyranosyl-d-mannose, 4-O-β-d-mannopyranosyl-d-glucoseT 4-O-β-d-glucopyranosyl-d-glucose(cellobiose), 4-O-β-d-glucopyranosyl-d-mannose(epicellobiose), O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-glucopyranosyl- (1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-mannopyranosyl-(1→4)-O-β-d-glucopy- ranosyl-(1→4)-d-mannose and O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-mannose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号