首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine-aldehyde compounds were prepared by the reactions of l-cysteine with formaldehyde, acetaldehyde, n-butyraldehyde, benzaldehyde and furfural in 50% ethanol solutions. Hydrogen sulfide and ammonia liberated from cysteine-aldehyde compounds in heated aqueous solutions (oil bath : 120°C) were determined. Although thiazolidine derivatives were stable generally in boiling aqueous solution, l-cysteine-furfural compound was unstable and a large amount of hydrogen sulfide compared with other compounds was released.  相似文献   

2.
Cysteine mercaptals and mercaptoles were prepared by the reactions of l-cystine with formaldehyde, acetaldehyde, n-butyraldehyde, benzaldehyde, furfural, pyruvic acid and levulinic acid in 6 n hydrochloric or sulfuric acid. Hydrogen sulfide released from cysteine mercaptals and mercaptoles in heated aqueous solutions (oil bath: 120°C) was determined. Although a small amount of hydrogen sulfide was liberated from l-cystine on one hour heating, its amount increased suddenly after three hours. Among these compounds l-cystine mercaptal of furfural was most unstable and a large amount of hydrogen sulfide was produced.  相似文献   

3.
信号分子ppGpp与微生物环境适应性   总被引:1,自引:0,他引:1  
微生物能感知环境胁迫信号,通过触发严谨反应对生长速率进行调节,并通过一系列代谢调控,使细胞能在不利环境中生存。高度磷酸化的鸟苷四/五磷酸ppGpp/pppGpp(文中以ppGpp统称)作为信号分子对微生物生理具有广泛的调节作用,至今仍是微生物学研究热点之一。ppGpp对于微生物适应高温、高压等环境起到了积极的作用。综述了信号分子ppGpp合成降解机制及其调控微生物适应性方面的研究进展。  相似文献   

4.
5.
抗生素是由微生物在生长发育后期产生的次级代谢产物,具有杀死或抑制细菌生长的能力,因此被广泛应用于细菌感染的临床治疗。在长期的进化过程中,细菌采取多种方式应对环境中抗生素的威胁。除了广为人知的抗生素耐药性(resistance)之外,细菌还能对抗生素产生耐受性(tolerance)和持留性(persistence),严重影响抗生素的临床疗效。鸟苷四磷酸(guanosine tetraphosphate, ppGpp)和鸟苷五磷酸(guanosine pentaphosphate, pppGpp) (本文统称ppGpp)是细菌应对营养饥饿等不利环境时产生的"报警"信号分子,其能够在全局水平调控基因的表达,使细菌适应不利的环境。越来越多的研究表明,ppGpp与细菌应对抗生素胁迫密切相关。基于此,本文综述了细菌中ppGpp的合成与水解及其作用机制,并重点阐述了ppGpp介导抗生素胁迫应答的分子机制,以期为新型抗生素的开发提供新思路。  相似文献   

6.
Prorennin-specific messenger ribonucleic acid (mRNA) has been purified by a combination of sizing techniques, including Sepharose 2B chromatography and sucrose density gradient centrifugation, and affinity chromatography with poly (U)-Sepharose, from total nucleic acid extracted from dry ice-pulverized, fourth stomach of a calf. This mRNA bound to poly (U)-Sepharose, indicating that it contained a poly (A) sequence. The total translation product in the mRNA-dependent wheat germ system, upon addition of this mRNA, was identified as authentic prorennin by gel electrophoresis. The molecular weight of this mRNA was about 3.5 × 105 as determined by gel electrophoresis. These results indicate that the synthesis of prorennin is directed by this mRNA 1,020 nucleotides in length and requires the full coding capacity of the molecule.  相似文献   

7.
Latency in Mycobacterium tuberculosis poses a barrier in its complete eradication. Overexpression of certain genes is one of the factors that help these bacilli survive inside the host during latency. Among these genes, rel, which leads to the expression of Rel protein, plays an important role by synthesizing the signaling molecule ppGpp using GDP and ATP as substrates, thereby changing bacterial physiology. In Gram-negative bacteria, the protein is thought to be activated in vivo in the presence of ribosome by sensing uncharged tRNA. In the present report, we show that Rel protein from Mycobacterium smegmatis, which is highly homologous to M. tuberculosis Rel, is functional even in the absence of ribosome and uncharged tRNA. From the experiments presented here, it appears that the activity of Rel(Msm) is regulated by the domains present at the C terminus, as the deletion of these domains results in higher synthesis activity, with little change in hydrolysis of ppGpp. However, in the presence of tRNA, though the synthesis activity of the full-length protein increases to a certain extent, the hydrolysis activity undergoes drastic reduction. Full-length Rel undergoes multimerization involving interchain disulfide bonds. The synthesis of pppGpp by the full-length protein is enhanced in the reduced environment in vitro, whereas the hydrolysis activity does not change significantly. Mutations of cysteines to serines result in monomerization with a simultaneous increase in the synthesis activity. Finally, it has been possible to identify the unique cysteine, of six present in Rel, required for tRNA-mediated synthesis of ppGpp.  相似文献   

8.
9.
10.
Accumulating evidence suggests that mRNA degradation systems are crucial for various biological processes in eukaryotes. Here we provide evidence that an mRNA degradation system is associated with some plant hormones and stress responses in plants. We analysed a novel Arabidopsis abscisic acid (ABA)-hypersensitive mutant, ahg2-1, that showed ABA hypersensitivity not only in germination, but also at later developmental stages, and that displayed pleiotropic phenotypes. We found that ahg2-1 accumulated more endogenous ABA in seeds and mannitol-treated plants than did the wild type. Microarray experiments showed that the expressions of ABA-, salicylic acid- and stress-inducible genes were increased in normally grown ahg2-1 plants, suggesting that the ahg2-1 mutation somehow affects various stress responses as well as ABA responses. Map-based cloning of AHG2 revealed that this gene encodes a poly(A)-specific ribonuclease (AtPARN) that is presumed to function in mRNA degradation. Detailed analysis of the ahg2-1 mutation suggests that the mutation reduces AtPARN production. Interestingly, expression of AtPARN was induced by treatment with ABA, high salinity and osmotic stress. These results suggest that both upregulation and downregulation of gene expression by the mRNA-destabilizing activity of AtPARN are crucial for proper ABA, salicylic acid and stress responses.  相似文献   

11.
The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH~5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses.  相似文献   

12.
《Current biology : CB》2020,30(24):4815-4825.e4
  1. Download : Download high-res image (150KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
Complete submergence of flooding-tolerant Rumex palustris plants strongly stimulates petiole elongation. This escape response is initiated by the accumulation of ethylene inside the submerged tissue. In contrast, petioles of flooding-intolerant Rumex acetosa do not increase their elongation rate under water even though ethylene also accumulates when they are submerged. Abscisic acid (ABA) was found to be a negative regulator of enhanced petiole growth in both species. In R. palustris, accumulated ethylene stimulated elongation by inhibiting biosynthesis of ABA via a reduction of RpNCED expression and enhancing degradation of ABA to phaseic acid. Externally applied ABA inhibited petiole elongation and prevented the upregulation of gibberellin A(1) normally found in submerged R. palustris. In R. acetosa submergence did not stimulate petiole elongation nor did it depress levels of ABA. However, if ABA concentrations in R. acetosa were first artificially reduced, submergence (but not ethylene) was then able to enhance petiole elongation strongly. This result suggests that in Rumex a decrease in ABA is a prerequisite for ethylene and other stimuli to promote elongation.  相似文献   

15.
16.
The capacity for ABA synthesis during moisture stress of primary leaves of bean ( Phaseolus vulgaris cv. Kinghorn) was defined in terms of leaf age and associated changes in several physiological parameters. The leaves were fully expanded within 9 days after emergence. Fresh and dry weights per unit of leaf area fell during all 5 weeks of the study, from leaf expansion through advanced senescence. The most significant losses in weight occurred during the third and fourth weeks and coincided with a sharp drop in protein content that began immediately after full-leaf. Chlorophyll concentrations declined rapidly during leaf expansion and then more slowly through the end of the fifth week when the leaves were ready to abscise. The ratio of chlorophyll a to b rose steeply over the first 4 weeks of the study.
Although a rapid loss of protein provided the most definitive indication of the early stages of leaf senescence, a marked decline in the ability to synthesize ABA was more closely associated with the termination of rapid leaf growth. This relationship between leaf expansion and the capacity for ABA synthesis during moisture stress remained unchanged when ABA content was expressed on a per unit chlorophyll, protein or dry weight basis.
A water deficit between 5 and 10% of fresh weight, representing a drop in water potential of less than 150 kPa, was sufficient to initiate accumulation of ABA in young leaves. Slightly more intensive levels of stress were required to stimulate ABA synthesis in senescent leaves, but total accumulation was less than one-tenth of the amount recorded in the younger tissue.  相似文献   

17.
18.
The rpoZ gene for the omega subunit of Escherichia coli RNA polymerase constitutes single operon with the spoT gene, which is responsible for the maintenance of stringent response under nutrient starvation conditions. To identify the physiological role of the omega subunit, we compared the gene expression profile of wild-type Escherichia coli with that of an rpoZ deleted strain by microarray analysis using an E. coli DNA chip. Here we report on a set of genes which show changes in expression profile following the removal of rpoZ. We have seen that relA, which is responsible for the synthesis of the stringent factor ppGpp and many ribosomal proteins, exhibited noticeable changes in mRNA levels and were therefore further analyzed for their expression using a GFP/RFP two-fluorescent protein promoter assay vector. In the absence of rpoZ, the promoter for the relA gene was severely impaired, but the promoters from the ribosomal protein genes were not affected as much. Taking these results together we propose that the omega subunit is involved in regulation of the relA gene, but induction of the stringently controlled genes in the absence of rpoZ is, at least in part, attributable to a decrease in ppGpp level.  相似文献   

19.
20.
For evaluating the physiological status of cells, astringent response network was used. Fluorescence from intact E. coli, which has a plasmid encoding the green fluorescence protein (GFP) under the regulation of rpoS promoter, was monitored. Comparison of the response of different E. coli strains demonstrated an essential role of ppGpp in the expression of GFP, as it activated the rpoS promoter. The physiological status of intact cells, that depends on ppGpp accumulation in response to the nutritional status such as amino acid starvation, could therefore be monitored by measuring fluorescent intensity using this reporter gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号