首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Condensation of methyl 16-aminomethyllambertianate with N-Boc-omega-amino acids leads smoothly to 16-(N-Boc-aminononan)- and 16-(N-Boc-aminoundecan)amidomethyllabdanoids. The amide of bicyclo[2.2.1]heptan-1,2-dicarbocylic acid with a labdanoid substituent was obtained under the reaction of methyl aminomethyllambertianate with bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride. Intereaction of methyl 16-aminomethyllambertianate with chloroacetyl chloride leads to methyl 16-(chloroacetylaminomethyl)lambertianate; condensation of this compound with amino acid methyl ethers the corresponding amides of methyl lambertianate was obtained. The resulting compounds are more (compared with lambertianic acid) cytotoxicity in the cell lines CEM-13, MT-4 and U-937 with an CCID50 concentration of 3.9-9.9 microM.  相似文献   

2.
A high yielding synthetic route for methyl 4'-O-methyl-beta-D-cellobioside starting from d-glucose was established. The reaction conditions optimized with nonlabeled materials were used for the synthesis of methyl 4'-O-methyl-13C12-beta-D-cellobioside, a compound having more than 99% 13C enrichment at each of the twelve pyranose carbon atoms. The labeled compound is required to study the hydrogen bond network of cellodextrins and cellulose by CPMAS NMR experiments.  相似文献   

3.
In the presence of oxygen, UV-irradiation of a solution of methyl 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate (13-HPOD) in methanol yields stereoisomers of methyl 9,13-dihydroxy-10-methoxy-11-(E)-octadecenoate and methyl 9,13-dihydroxy-12-methoxy-10(E)-octadecenoate as major products. The reaction pathway to the products was established by photolysis experiments with labeled 13-HPOD and with intermediates of the reaction route. When methanol was substituted by water in the reaction system, the corresponding trihydroxyoctadecenoic acids were formed. This was confirmed by aerobic photolysis of 13-HPOD (free acid) dissolved in water. Threo and erythro methyl 12, 13-epoxy-11-hydroxy-9(Z)-octadecenoates belong to the minor compounds formed during aerobic photolysis of the 13-HPOD in methanol. Labeling experiments indicated that the threo compound resulted mainly from a rearrangement of the 13-HPOD while the erythro compound is mainly formed via secondary hydroperoxidation.  相似文献   

4.
The reaction of methyl 2,3-anhydro-beta-D-ribofuranoside with hydrogen bromide in an acetic acid-acetic anhydride solution leads to the formation of methyl 2,3-di-O-acetyl-5-bromo-5-deoxy-alpha,beta-D-xylofuranoside. Similar treatment of methyl 2,3-anhydro-5-O-benzoyl-beta-D-robofuranoside provided methyl 2-O-acetyl-3-O-benzoyl-5-bromo-5-deoxy-alpha,beta-D-xylofuranosides. The position of halogen substitution was ascertained by hydrogenolysis to the resultant 5-deoxy sugars, which were characterized by their n.m.r. spectra. Confirmation of the structural assignment for methyl 2-O-acetyl-3-O-benzoyl-5-deoxy-alpha,beta-D-xylofuranoside was obtained by synthesis from 1,2-O-isopropylidene-alpha-D-xylofuranose. The formation of the 5-bromo derivatives under the reported conditions probably occurred through the intermediacy of the 3,5-acyloxonium ions. Similar conversions were observed when the starting compound was treated with hydrogen chloride, acetyl bromide, or acetyl chloride in acetic acid-acetic anhydride solutions.  相似文献   

5.
Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid, the phosphonic analog of 3,4-dihydroxyphenylglycine, had been previously reported as a potent inhibitor of tyrosinase. The mechanism of the apparent enzyme inhibition by this compound has now been established. Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid turned out to be a substrate and was oxidized to o-quinone, which evolved to a final product identified as 3,4-dihydroxybenzaldehyde, the same as for 3,4-dihydroxyphenylglycine. Monohydroxylated compounds (amino-(3-hydroxyphenyl)methyl phosphonic acid and amino-(4-hydroxyphenyl)methyl phosphonic acid) were not oxidized, neither was 4-hydroxy-l-phenylglycine. However, the relatively high Km for amino-(3,4-dihydroxyphenyl)methyl phosphonic acid (0.52 mm) indicated that competitive inhibition could not entirely explain the previously reported strong inhibitory effect (Ki = 50 and 97 micro m for tyrosine and 3-(3,4-dihydroxyphenyl)alanine (Dopa) as substrates, respectively). Neither was the enzyme covalently inactivated to a significant degree. Spectroscopic and electrochemical analysis of the oxidation of a mixture of Dopa and the inhibitor demonstrated that the phosphonic compound reduced dopaquinone back to Dopa, thus diminishing and delaying the formation of dopachrome. This produces an apparent strong inhibitory effect when the reaction is monitored spectrophotometrically at 475 nm. In this peculiar case Dopa acts as a redox shuttle mediating the oxidation of the shorter phosphonic homolog. Decomposition of the phosphonic o-quinone to 3,4-dihydroxybenzaldehyde drives the reaction against the slightly unfavorable difference in redox potentials.  相似文献   

6.
The reactions of native lactoperoxidase and its compound II with two substituted catechols have been investigated by ESR spin stabilization and spin trapping and by rapid scan and conventional spectrophotometric techniques. The catechols are Dopa methyl ester (dihydroxyphenylalanine methyl ester) and 6-hydroxy-Dopa (trihydroxyphenylalanine). o-Semiquinone radicals are formed in the anaerobic reaction of Dopa methyl ester with hydrogen peroxide catalyzed by native lactoperoxidase. The comparable anaerobic reaction of 6-hydroxy-Dopa appears to produce hydroxyl radicals in an unusual reaction. Compound II is reduced back to native lactoperoxidase by both catechols. The reaction between Dopa methyl ester and compound II undergoes an oscillation. The results on the overall lactoperoxidase cycle indicate two successive one-electron reductions of the peroxidase intermediates back to the native enzyme. The resulting free radical formation of o- and p-semiquinones and subsequent formation of stable quinones and Dopachromes is dependent upon the stereochemical arrangement of the catechol hydroxyl groups.  相似文献   

7.
The nucleophilic addition of GSH to quinonoid compounds, characterized as a 1,4-reductive addition of the Michael type, was studied with p-benzoquinone- and 1,4-naphthoquinone epoxides with different degree of methyl substitution. Identification and evaluation of molecular products from the above reaction were assessed by h.p.l.c. with either reductive or oxidative electrochemical detection, based on the redox properties retained in the molecular products formed. It was found that the degree of methyl substitution of the quinone epoxide, from either the 1,4-naphthoquinone- or p-benzoquinone epoxide series, determined their rate of reaction with GSH. The reductive addition implied the rearrangement of the quinone structure with opening of the epoxide ring yielding as the primary product a hydroxy-glutathionyl substituted adduct of either p-benzohydroquinone or 1,4-naphthohydroquinone. The primary product undergoes elimination reactions and redox transitions which bring about a number of secondary molecular products. The distribution pattern of the latter depends on the degree of methyl substitution of the quinone epoxide studied and on the concentration of O2 in the solution. The occurrence of the hydroxy-substituent in position alpha, adjacent to the carbonyl group, enhances the autoxidation properties of the compound resulting in an augmented O2 consumption and H2O2 production. Therefore, it could be expected that the chemical reactivity of the products originating from the thiol-mediated nucleophilic addition to quinone epoxides would be of toxicological interest.  相似文献   

8.
The reaction rates in aqueous solutions of aminothiols, thiols, and other compounds with N-acetyl dehydroalanine and its methyl ester (2-acetamindoacrylic acid and methyl 2-acetamidoacrylate) were studied as a function of the structure of the thiol compound in aqueous solutions. Correction of the observed second-order rate constants to identical thiol anion concentration gave a series of computed rate constants whose logarithms showed a linear dependence on the pK's of the thiol group in similar steric environments. Comparison of the addition rates of penicillamine to N-acetyl dehydroalanine and its methyl ester showed the methyl ester to react approximately 11,400 times faster than the acid. Addition rates for thiol acids and aromatic and heterocyclic thiols were also compared; each showed sluggish reactivity with dehydroalanine, but each reacted readily with methyl dehydroalanine. The kinetic data were applied in developing a method for preparing lanthionine in high yield.  相似文献   

9.
Methyl octadec-11Z-en-9-ynoate (1) was epoxidized to give methyl 11,12-Z-epoxy-octadec-9-ynoate (2, 81%). Acid catalyzed ring opening of the epoxy ring of compound 2 gave methyl 11,12-dihydroxy-octadec-9-ynoate (3, 80%). The latter was treated with mesyl chloride to yield methyl 11,12-dimesyloxy-octadec-9-ynoate (4, 76%). Reaction of compound 4 with sodium azide furnished methyl 11-azido-12-mesyloxy-octadec-9-ynoate (5a, 49%) and methyl 11-azido-octadec-11E-en-9-ynoate (5b, 24%). Compound 2 was semi-hydrogenated over Lindlar catalyst to give methyl 11,12-Z-epoxy-octadec-9Z-enoate (6, 90%). This allylic epoxy fatty ester (6) was reacted with sodium azide to give a mixture of methyl 11-azido-12-hydroxy-octadec-9Z-enoate (7a) and methyl 9-azido-12-hydroxy-octadec-9E-enoate (7b), which could not be separated into individual components by silica chromatography. Chromic acid oxidation of the mixture of compounds 7a and 7b furnished methyl 9-azido-12-oxo-octadec-10E-enoate (8, 42% based on amount of compound 6 used) and an intractable mixture of polar compounds. The various products were characterized by NMR spectroscopic and mass spectral analyses.  相似文献   

10.
The synthesis of 2,4-bis(bromomethyl)estrone methyl ether was accomplished by reacting estrone methyl ether with formaldehyde and hydrogen bromide in s-tetrachloroethane. The compound readily reacts with cysteine, tryptophan and histidine in 0.05 M phosphate buffer pH 7.0. It also reacts with compounds containing sulfhydryl groups, such as 2-mercaptoethanol and the reduced form of 5,5'dithiobis(2-nitrobenzoic acid). Structural analysis and stoichiometry of the reaction of the bromomethylsteroid with cysteine indicates that the title compound contains two reactive bromomethyl groups. The biological activity of the bromomethylsteroid was evaluated by analysis of its effect on uterine glucose-6-phosphate dehydrogenase activity after administration into the uterine lumen of ovariectomized rats. While it lacked estrogenic activity, the compound did display an antiestrogenic effect that was both greater and more persistent than that of an equimolar quantity of estrone methyl ether.  相似文献   

11.
Methyl xylobioside and methyl xylotrioside were prepared from the peracetylated anomeric xylosyl trichloroacetimidates by reaction with methanol followed by Zemplén deacetylation. Methyl beta-D-xylopyranoside, methyl beta-D-xylobioside and methyl beta-D-xylotrioside were subjected to treatment with dibutyltin oxide followed by reaction with the trimethylamine/sulfur trioxide complex in tetrahydrofuran. This way, preferential sulfation of the terminal 4-hydroxy group at the nonreducing xylopyranosyl unit was achieved. In addition, partial sulfation at position 2 of the distal xylose unit was observed. The substitution pattern was derived from NMR spectroscopic data and was confirmed by the X-ray structure determination of sodium methyl beta-D-xylopyranoside 4-O-sulfate. The compound crystallized as a hemihydrate in a triclinic lattice of space group P1 and possesses a pseudomonoclinic 2D supramolecular structure. The sulfation of free pentose oligomers via their intermediate stannylene acetals may thus be exploited to generate biologically active oligosaccharides for biomedical applications.  相似文献   

12.
The identification of the peracetylated methyl glycosides of 3-deoxy-D-manno-2-octulosonic acid (KDO) methyl esters was achieved by g.l.c.-m.s. These peracetylated methyl glycoside methyl esters were obtained from fully acetylated lipopolysaccharides and core oligosaccharides of representative strains of the Vibrionaceae family by the following sequence of mild reactions: acetolysis, methanolysis, and acetylation. KDO was shown to be present in all of the lipopolysaccharides (LPS), a result in direct contrast to the generally accepted view of the absence of this compound in LPS from this family of bacteria.  相似文献   

13.
Methyl xylobioside and methyl xylotrioside were prepared from the peracetylated anomeric xylosyl trichloroacetimidates by reaction with methanol followed by Zemplén deacetylation. Methyl β-d-xylopyranoside, methyl β-d-xylobioside and methyl β-d-xylotrioside were subjected to treatment with dibutyltin oxide followed by reaction with the trimethylamine/sulfur trioxide complex in tetrahydrofuran. This way, preferential sulfation of the terminal 4-hydroxy group at the nonreducing xylopyranosyl unit was achieved. In addition, partial sulfation at position 2 of the distal xylose unit was observed. The substitution pattern was derived from NMR spectroscopic data and was confirmed by the X-ray structure determination of sodium methyl β-d-xylopyranoside 4-O-sulfate. The compound crystallized as a hemihydrate in a triclinic lattice of space group P1 and possesses a pseudomonoclinic 2D supramolecular structure. The sulfation of free pentose oligomers via their intermediate stannylene acetals may thus be exploited to generate biologically active oligosaccharides for biomedical applications.  相似文献   

14.
By the use of EPR spectroscopy, it has been shown that acyl nitroso compounds can act as spin traps for short-lived radicals with the formation of acyl aminoxyl radicals. The reaction was studied for the system benzohydroxamicacid[Ph-C (= O)N(H)] - dimethyl sulfoxide - hydrogen peroxide. The acyl aminoxyl radicals appeared almost immediately when the reaction mixture was irradiated in situ in the EPR cavity with UV light. The trapping reaction involved two photochemical reactions, i.e. the oxidation of the hydroxamic acid to the acyl nitroso compound Ph-C (= O)NO, and the formation of methyl radicals from dimethyl sulfoxide. The EPR spectra are superpositions of the spectra of two species of acyl aminoxyl radicals, i.e. the radicals Ph-C (= O)N(O·)H formed by oxidation of the parent benzohydrox-amic acid, and the radical Ph-C (= O)N(O·)CH3, formed by trapping of methyl radicals.  相似文献   

15.
The methylation-demethylation reaction of methyl-accepting chemotaxis protein (MCP) is tightly coupled to the appearance of the chemotactic response in Escherichia coli. The bacteria might therefore show a unique response upon the addition of a compound containing a methyl group. We selected methyl N-methyl anthranilate (NMMA) and its analogs for examination. When NMMA was added to a suspension of E. coli (wild type), the bacteria tumbled as it does in the presence of a repellent. NMMA caused tumbling of wild-type bacteria for at least 20 min, while a conventional repellent makes the bacteria tumble for at most one min. The effect of NMMA requires functional MCP, cheA gene product, cheB gene product, and possibly cheX gene product. A positive signal of NMMA (i.e. sudden dilution) was detected by cheZ mutants with much higher sensitivity than that of a conventional repellent, indole, while both signals were rather poorly but equally detected by cheB mutants. These results suggest that the drug is related to the function of cheB gene product, a possible demethylating enzyme of MCP.  相似文献   

16.
A new bile acid analogue, 3 alpha,7 alpha-dihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid (7-Me-norCDCA) was synthesized from the methyl ester of norursodeoxycholic acid, and its hepatic biotransformation was defined in the hamster. To synthesize 7-Me-norCDCA, the 3 alpha-hydroxyl group of methyl norursodeoxycholate was protected as the hemisuccinate, and the 7 beta-hydroxyl group was oxidized with CrO3 to form the 7-ketone. A Grigard reaction with methyl magnesium iodide followed by alkaline hydrolysis gave 7-Me-norCDCA (greater than 70% yield). The structure of the new compound was confirmed by proton magnetic resonance and mass spectrometry. After intraduodenal administration of the 14C-labeled compound into the anesthetized biliary fistula hamster, it was rapidly and efficiently secreted into the bile; 80% of radioactivity was recovered in 2 h. After intravenous infusion, the compound was efficiently extracted by the liver and secreted into the bile (greater than 75% in 3 h). Most (93%) of the biliary radioactivity was present in biotransformation products. The major biotransformation product (48.7 +/- 6.0%) was a new compound, assigned the structure of 3 alpha,5 beta,7 alpha- trihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid (5 beta-hydroxy-7- Me-norCDCA). In addition, conjugates of 7-Me-norCDCA with taurine (13.7 +/- 5.0%), sulfate (10.3 +/- 3.0%), or glucuronide (5.1 +/- 1.7%) were formed. 7-Me-norCDCA was strongly choleretic in the hamster; during its intravenous infusion, bile flow increased 2 to 3 times above the basal level, and the calculated choleretic activity of the compound (and its metabolic products) was much greater than that of many natural bile acids, indicating that the compound induced hypercholeresis. It is concluded that the biotransformation and physiological properties of 7-Me-norCDCA closely resemble those of norCDCA. Based on previous studies, the major biological effect of the 7-methyl group in 7-Me-norCDCA is to prevent its bacterial 7-dehydroxylation in the distal intestine.  相似文献   

17.
A model synthesis of a nucleoside boranophosphoramidate prodrug with (L)-tryptophan methyl ester was accomplished in a one-pot reaction via an H-phosphonate approach. This new type of compound is expected to possess the potent antiviral and anticancer advantages conferred by boranophosphates and normal nucleoside amino acid phosphoramidate.  相似文献   

18.
A model synthesis of a nucleoside boranophosphoramidate prodrug with (L)-tryptophan methyl ester was accomplished in a one-pot reaction via an H-phosphonate approach. This new type of compound is expected to possess the potent antiviral and anticancer advantages conferred by boranophosphates and normal nucleoside amino acid phosphoramidate.  相似文献   

19.
Sheep liver mitochondrial aldehyde dehydrogenase reacts with 2,2'-dithiodipyridine and 4,4'-dithiodipyridine in a two-step process: an initial rapid labelling reaction is followed by slow displacement of the thiopyridone moiety. With the 4,4'-isomer the first step results in an activated form of the enzyme, which then loses activity simultaneously with loss of the label (as has been shown to occur with the cytoplasmic enzyme). With 2,2'-dithiodipyridine, however, neither of the two steps of the reaction has any effect on the enzymic activity, showing that the mitochondrial enzyme possesses two cysteine residues that must be more accessible or reactive (to this reagent at least) than the postulated catalytically essential residue. The symmetrical reagent 5,5'-dithiobis-(1-methyltetrazole) activates mitochondrial aldehyde dehydrogenase approximately 4-fold, whereas the smaller related compound methyl l-methyltetrazol-5-yl disulphide is a potent inactivator. These results support the involvement of mixed methyl disulphides in causing unpleasant physiological responses to ethanol after the ingestion of certain antibiotics.  相似文献   

20.
Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号