首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品.目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA)在耐受性中的作用研究较少.在对酿酒酵母抗逆性研究过程中发现,一些转运RNA...  相似文献   

2.
Construction of xylose- and xylo-oligosaccharide-fermenting Saccharomyces cerevisiae strains is important, because hydrolysates derived from lignocellulosic biomass contain significant amounts of these sugars. We have obtained recombinant S. cerevisiae strain MA-D4 (D-XKXDHXR), expressing xylose reductase, xylitol dehydrogenase and xylulokinase. In the present study, we generated recombinant strain D-XSD/XKXDHXR by transforming MA-D4 with a β-xylosidase gene cloned from the filamentous fungus Trichoderma reesei. The intracellular β-xylosidase-specific activity of D-XSD/XKXDHXR was high, while that of the control strain was under the limit of detection. D-XSD/XKXDHXR produced ethanol, and xylose accumulated in the culture supernatant under fermentation in a medium containing xylo-oligosaccharides as sole carbon source. β-Xylosidase-specific activity in D-XSD/XKXDHXR declined due to xylose both in vivo and in vitro. D-XSD/XKXDHXR converted xylo-oligosaccharides in an enzymatic hydrolysate of eucalyptus to ethanol. These results indicate that D-XSD/XKXDHXR efficiently converted xylo-oligosaccharides to xylose and subsequently to ethanol.  相似文献   

3.
The cDNA encoding a putative xylose reductase (xyrA) from Aspergillus oryzae was cloned and coexpressed in the yeast Saccharomyces cerevisiae with A. oryzae xylitol dehydrogenase cDNA (xdhA). XyrA exhibited NADPH-dependent xylose reductase activity. The S. cerevisiae strain, overexpressing the xyrA, xdhA, endogenous XKS1, and TAL1 genes, grew on xylose as sole carbon source, and produced ethanol.  相似文献   

4.
为了使酿酒酵母较好地利用木糖产生乙醇,将来自Thermus thermophilus的木糖异构酶基因XYLA和酿酒酵母自身的木酮糖激酶基因XKS1,构建到酵母表达载体pESC-LEU中,导入酿酒酵母YPH499中,同时成功表达了两种酶基因。该菌以木糖为唯一碳源进行限氧发酵,木糖的利用率为9.64%,为宿主菌的4.17倍,产生2.22 mmol.L-1的乙醇。同时初步探讨了两种酶基因的表达量对酿酒酵母发酵木糖生成乙醇的影响。木糖异构酶对木糖的利用起关键性的作用,木酮糖激酶的过量表达不利于乙醇生成。  相似文献   

5.
Kenaf (Hibiscus cannabinus) is an annual fiber crop grown mainly in India and China. This crop is becoming a new bio‐based energy source because of its fast growth rate, excellent CO2 absorption ability, and large productivity per unit area. In this study, we evaluated 10 different cultivars of kenaf for their potential as biomass for cellulosic ethanol production. First, kenaf samples were hydrolyzed using dilute sulfuric acid, which is the most simple and cost‐effective pretreatment method. Next, simultaneous saccharification and fermentation (SSF) of the hydrolysates were performed by wild‐type and engineered xylose‐fermenting yeast strains. The results of compositional analysis of the biomass, the hydrolysates, and the fermented products suggested that ethanol yield and productivity were significantly affected by a type of kenaf cultivars, which was not predictable based on the biomass compositions. Also, the ethanol production was maximized when the xylose fraction was utilized by engineered yeast under the control of pH to avoid acetate inhibition. Considering the sugar compositions and their fermentability, kenaf can be a promising energy‐dedicated crop for cellulosic ethanol production.  相似文献   

6.
酿酒酵母木糖发酵酒精途径工程的研究进展   总被引:16,自引:1,他引:16  
途径工程(Pathway engineering),被称为第三代基因工程,改变代谢流向,开辟新的代谢途径是途径工程的主要目的。利用途径工程理念,对酿酒酵母(Saccharomyces cerevisiae)代谢途径进行理性设计,以拓展这一传统酒精生产菌的底物范围,使其充分利用可再生纤维质水解物中的各种糖分,是酿酒酵母酒精途径工程的研究热点之一。这里介绍了近年来酿酒酵母以木糖为底物的酒精途径工程的研究进展。  相似文献   

7.
Microbial conversion of plant biomass into fuels and chemicals offers a practical solution to global concerns over limited natural resources, environmental pollution, and climate change. Pursuant to these goals, researchers have put tremendous efforts and resources toward engineering the yeast Saccharomyces cerevisiae to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into various fuels and chemicals. Here, recent advances in metabolic engineering of yeast is summarized to address bottlenecks on xylose assimilation and to enable simultaneous co-utilization of xylose and other substrates in lignocellulosic hydrolysates. Distinct characteristics of xylose metabolism that can be harnessed to produce advanced biofuels and chemicals are also highlighted. Although many challenges remain, recent research investments have facilitated the efficient fermentation of xylose and simultaneous co-consumption of xylose and glucose. In particular, understanding xylose-induced metabolic rewiring in engineered yeast has encouraged the use of xylose as a carbon source for producing various non-ethanol bioproducts. To boost the lignocellulosic biomass-based bioeconomy, much attention is expected to promote xylose-utilizing efficiency via reprogramming cellular regulatory networks, to attain robust co-fermentation of xylose and other cellulosic carbon sources under industrial conditions, and to exploit the advantageous traits of yeast xylose metabolism for producing diverse fuels and chemicals.  相似文献   

8.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

9.
[目的]以不同强度的启动子控制表达木酮糖激酶基因,并研究其引起的不同木酮糖激酶活性水平对木糖利用酿酒酵母(Saccharomyces cerevisiae)代谢流向的影响.[方法]以酿酒酵母CEN.PK 113-5D为出发菌株,选择酿酒酵母内源启动子TEF1p,PGK1p和HXK2p,利用Cre-loxP无标记同源重组系统,置换染色体上木酮糖激酶基因XKS1的启动子(XKS1p)序列;并通过附加体质粒引入木糖代谢上游途径,构建不同水平表达木酮糖激酶的木糖利用工程菌株;从木酮糖激酶的转录水平、酶活水平、胞内的ATP浓度及木糖代谢等性状,对各菌株进行评价.[结果]转录及酶活测定结果显示,与天然状态相比,所选择的启动子对木酮糖激酶均表现出更强的启动效率.菌株体内表达木酮糖激酶活性水平由高至低的顺序为其基因XKS1在启动子PGK1p、TEF1p、HXK2p和XKS1p控制下.随着木酮糖激酶的活性的提高,胞内的ATP水平下降,而转化木糖生成乙醇的能力上升.最高乙醇产率为0.35g/g消耗的总糖,此时副产物木糖醇产率最低,为0.18g/g消耗的木糖.[结论]通过在染色体上置换启动子,提高了木酮糖激酶的表达水平.在一定范围内,木酮糖激酶的高活性有利于木糖向乙醇的转化.  相似文献   

10.
Strains of Saccharomyces cerevisiae transformed with a multicopy expression vector bearing both the Escherichia coli beta-galactosidase gene under the control of the upstream activating sequence of the GAL1-10 genes and the GAL4 activator gene release part of beta-galactosidase in the growth medium. This release is due to cell lysis of the older mother cells; the enzyme maintains its activity in buffered growth media. Fermentation studies with transformed yeast strains showed that the release of beta-galactosidase allowed an efficient growth on buffered media containing lactose as carbon source as well as on whey-based media. The transformed strains utilized up to 95% of the lactose and a high growth yield was obtained in rich media. High productions of ethanol were also observed in stationary phase after growth in lactose minimal media.  相似文献   

11.
Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.  相似文献   

12.
Acetate is present in lignocellulosic hydrolysates at growth inhibiting concentrations. Industrial processes based on such feedstock require strains that are tolerant of this and other inhibitors present. We investigated the effect of acetate on Saccharomyces cerevisiae and show that elevated acetate concentrations result in a decreased specific growth rate, an accumulation of cells in the G1 phase of the cell cycle, and an increased cell size. With the cytostat cultivation technology under previously derived optimal operating conditions, several acetate resistant mutants were enriched and isolated in the shortest possible time. In each case, the isolation time was less than 5 days. The independently isolated mutant strains have increased specific growth rates under conditions of high acetate concentrations, high ethanol concentrations, and high temperature. In the presence of high acetate concentrations, the isolated mutants produce ethanol at higher rates and titers than the parental strain and a commercial ethanol producing strain that has been analyzed for comparison. Whole genome microarray analysis revealed gene amplifications in each mutant. In one case, the LPP1 gene, coding for lipid phosphate phosphatase, was amplified. Two mutants contained amplified ENA1, ENA2, and ENA5 genes, which code for P‐type ATPase sodium pumps. LPP1 was overexpressed on a plasmid, and the growth data at elevated acetate concentrations suggest that LPP1 likely contributes to the phenotype of acetate tolerance. A diploid cross of the two mutants with the amplified ENA genes grew faster than either individual haploid parent strain when 20 g/L acetate was supplemented to the medium, which suggests that these genes contribute to acetate tolerance in a gene dosage dependent manner. Biotechnol. Bioeng. 2009;103: 500–512. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
酿酒酵母纤维素乙醇统合加工(CBP)的策略及研究进展   总被引:2,自引:0,他引:2  
木质纤维素乙醇的统合生物加工过程(Consolidated bioprocessing,CBP)是将纤维素酶和半纤维素酶生产、纤维素水解和乙醇发酵过程组合或部分组合,通过一种微生物完成。统合生物加工过程有利于降低生物转化过程的成本,越来越受到研究者的普遍关注。酿酒酵母Saccharomyces cerevisiae是传统的乙醇发酵菌株。介绍了影响外源基因在酿酒酵母中表达水平的因素,纤维素酶和半纤维素酶在酿酒酵母中表达研究进展及利用酿酒酵母统合加工纤维素乙醇的策略。  相似文献   

14.
FL-657B, which induced differentiation of Friend leukemia cells, was isolated from the culture fluid of Streptomyces sioyaensis and identified with trichostatic acid, a hydrolysis product of trichostatin A and C. FL-657B induced hemoglobin biosynthesis of both dimethyl sulfoxide-sensitive and -resistant Friend leukemia cells. FL-657B caused approximately 90% of the cells to be benzidine positive and reduced the growth to approximately 30~70% of the control at 2.42 μ/ml. Hemoglobin newly biosynthesized by the induction of FL-657B showed a UV absorption pattern similar to that from the normal mouse.  相似文献   

15.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   

16.
Development of a kinetic model for the alcoholic fermentation of must   总被引:2,自引:0,他引:2  
We Propose a kinetic expression which accounts for the temperature dependence of ethanol yield losses in batch alcoholic fermentation. Moreover, the characteristic parameters of the microbial growth equation have been calculated for Saccharomyces cerevisiae under typical wine industry conditions. A substrate consumption equation is established which minimizes possible model deviations in the latter process stages. Experimental data were obtained in the laboratory and the proposed equations were then applied at an industrial level (2.5 x 10(4) L) where they described the data well.  相似文献   

17.
木糖异构酶在酿酒酵母细胞表面的展示   总被引:2,自引:0,他引:2  
将来源于嗜热细菌Thermus thermophilus的木糖异构酶基因xylA,与酿酒酵母(Sac-charomyces cerevisiae)a-凝集素表面展示载体pYD1的Aga2p亚基C端序列融合。编码融合蛋白的基因序列前接上半乳糖诱导型启动子。用LiAc完整细胞法转化酿酒酵母EBY100。含重组质粒的菌株EBY100/pYD-xylA经半乳糖诱导表达外源融合蛋白,免疫荧光显微镜结果显示外源蛋白被锚定在细胞壁上,木糖异构酶活性测定结果表明,细胞壁上酶活测定值为1.52U,木糖异构酶在酿酒酵母细胞壁上得到活性表达。  相似文献   

18.
19.
酿酒酵母是工业发酵生产乙醇的重要菌种,但是其发酵产物乙醇对酿酒酵母有明显的抑制作用.选育乙醇耐受性酿酒酵母是克服高浓度乙醇的抑制作用,提高乙醇产量的一条重要途径.本文对近年来国内外选育乙醇耐受性酵母的研究作一综述,旨在为乙醇耐受性酵母的选育提供参考.  相似文献   

20.
Biofilms are natural forms of cell immobilization in which microorganisms attach to solid supports. At ISU, we have developed plastic composite-supports (PCS) (agricultural material (soybean hulls or oat hulls), complex nutrients, and polypropylene) which stimulate biofilm formation and which supply nutrients to the attached microorganisms. Various PCS blends were initially evaluated in repeated-batch culture-tube fermentation with Saccharomyces cerevisiae (ATCC 24859) in low organic nitrogen medium. The selected PCS (40% soybean hull, 5% soybean flour, 5% yeast extract-salt and 50% polypropylene) was then used in continuous and repeated-batch fermentation in various media containing lowered nitrogen content with selected PCS. During continuous fermentation, S. cerevisiae demonstrated two to 10 times higher ethanol production in PCS bioreactors than polypropylene-alone support (PPS) control. S. cerevisiae produced 30 g L−1 ethanol on PCS with ammonium sulfate medium in repeated batch fermentation, whereas PPS-control produced 5 g L−1 ethanol. Overall, increased productivity in low cost medium can be achieved beyond conventional fermentations using this novel bioreactor design. Received 20 May 1997/ Accepted in revised form 29 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号