首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The state of amino acid residues in alkaline protease of Bacillus No. 221 and that of subtiiisin BPN’ were compared by spectrophotometric tiiration of tyrosine residues and by several reagents: β-naphtoqumone-4,6-disulfonic acid and monochlorofluoroquinone for amino groups, H2O2-dioxane for tryptophan, glyoxal for arginine, and tetranitromethane for tyrosine.

The reactivity of both proteases was fairly similar to those reagents.

The helix content of alkaline protease of Bacillus No. 221 (37%) was higher than that of subtilisin BPN’ (20%).

The Km and Vmax of alkaline protease of Bacillus No. 221 toward ATEE and BTEE were obtained from Lineweaver-Burk plot and compared with those of α-chymotrypsin and subtiiisin BPN’.  相似文献   

2.
Streptomyces subtilisin inhibitor (SSI) has been shown to exist as a dimer of molecular weight of 23,000 in 25 mm phosphate buffer, at pH 7.0 (the ionic strength 0.1 m with NaCl), 25.0 °C in the concentration range of 0.01–10 mg/ml. In the present paper, the effects of an anionic detergent, sodium dodecyl sulfate (SDS), on the structure and function of SSI has been examined, [a]The molecular weight of SSI was measured in the SDS solution with the sedimentation equilibrium method of the multicomponent-polydisperse system under the conditions described above, and thereby it has been shown that SSI dissociates into monomers with SDS of 0.03–0.12% (wv) when the concentration of SSI is 1.00 mg/ml (87.0 μm as monomer), [b]As SSI dissociates into monomers, there were observed blue-shift troughs at 293 nm and 300 nm due to a tryptophyl residue and a red-shift of phenylalanyl residues in the absorption difference spectrum induced by the binding of SSI and SDS. [c] The inhibitory activity of SSI against subtilisin BPN′-catalyzed hydrolysis of p-nitrophenyl acetate was measured under the conditions that SSI is in monomer in the SDS solution. Unexpectedly half of the inhibitory activity of SSI against subtilisin BPN′ is lost in the SDS solution.  相似文献   

3.
Summary The Bacillus sp. no. AH-101 alkaline protease showed higher hydrolysing activity against insoluble fibrous natural proteins such as elastin and keratin in comparison with subtilisins and Proteinase K. The optimum pH of the enzyme toward elastin and keratin was pH 10.5 and pH 11.0–12.0 respectively. The specific activity toward elastin and keratin was 10 600 units/mg protein and 3970 units/mg protein, respectively. The enzymatic activity was not inhibited by p-chloromercuribenzoic acid and iodoacetic acid. Carbobenzoxy-glycyl-glycyl-L-phenylalanyl chloromethyl ketone completely inhibited the caseinolytic activity, but 36% elastolytic activity remained. No inhibitory effect on caseinolytic and elastolytic activity was shown by tosyl-L-phenylalanyl-chloromethyl ketone, tosyl-L-lysine chloromethyl ketone, carbobenzoxy-L-phenylalanyl chloromethyl ketone, and elastatinal. The amino acid composition and amino terminal sequence of the enzyme were determined. The no. AH-101 alkaline protease was compared with subtilisin BPN', subtilisin Carlsberg, no. 221, and Ya-B alkaline proteases. Extensive sequence homology existed among these enzymes. Offprint requests to: H. Takami  相似文献   

4.
Microbial alkaline protease inhibitor, S–SI, was investigated on the interaction with subtilisin BPN′ Inhibitory equivalent of S–SI to subtilisin BPN′ was determined that one molecule of S–SI (MW = 23,000) inhibited two molecules of subtilisin BPN′ (MW = 27,700). The S–SI-subtilisin BPN′ complex was isolated by gel filtration on Sephadex G–100 and rhombic crystals were obtained. DIP- and ZAGPCK-subtilisin BPN′ did not form such complex with S–SI. Homogeneity of the complex was determined by disc electrophoresis. The isoelectric point of the complex was pH 5.5. Assay of S–SI dissociated and amino acid analysis of the complex indicated that one subunit (a half molecule) of S–SI was combined with one molecule of subtilisin BPN′ From molecular weight determination, it was clarified that the complex was composed of one molecule (consist of 2 subunits) of S–SI and two molecules of subtilisin BPN′.  相似文献   

5.
Reversed-phase high-performance liquid chromatography (RP-HPLC) separation was used for the comparison of peptide maps of pepsin after its digestions by different forms of immobilized α-chymotrypsin. Porcine pepsin was hydrolysed with soluble α-chymotrypsin, with α-chymotrypsins glycosylated with lactose or galactose coupled to hydrazide derivative of cellulose, with α-chymotrypsin attached to poly(acrylamide-allyl glycoside) copolymer or to glycosylated hydroxyalkyl methacrylate copolymer Separon or to agarose gel Sepharose 4B. Efficiency of enzymatic protein cleavage with regard to peptide mapping of porcine pepsin has been examined by the use of α-chymotrypsins immobilized by different methods. Best results were achieved after hydrolysis with α-chymotrypsin immobilized on poly(acrylamide-allyl glycoside) copolymers. α-Chymotrypsin immobilized by this way has further three times higher relative specific activity in comparison with the soluble one. Modified α-chymotrypsin was not suitable for efficient pepsin cleavage.  相似文献   

6.
Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min(-1) g(-1)) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally.  相似文献   

7.
Two novel extracellular serine proteases were purified to homogeneity from the cell-free culture filtrate of an obligate alkalophilic Bacillus sphaericus by a combination of ultrafiltration, ammonium sulfate precipitation and chromatographic methods. The enzymes showed similar substrate specificities, but differed in hydrophobicity and molecular mass. Protease A was a monomeric protease with a relative molecular mass (M r) of 28.7 kDa, whereas protease B, with a M r of 68.0 kDa, apparently consisted of smaller subunits. The purified protease A had a specific activity on hemoglobin of 5.1 U/mg protein compared to 40.9 U/mg protein in the case of protease B. Both proteases were most active on SAAPF-pNa, a substrate for chymotrypsin-like serine proteases. However, the K m values of these two proteases on SAAPF-pNa were higher than that for α-chymotrypsin, indicating a lower affinity of proteases A and B for this substrate compared to chymotrypsin. Unlike other Bacillus serine proteases, neither protease A nor B stained with Coomasie blue R-250, even with loading of a large amount of protein, and they stained poorly with the silver staining method. However, NH2-terminal amino acid sequencing of protease B revealed a high similarity with subtilisin Carlsberg (67% homology). Almost total inhibition of both proteases by PMSF, but very little/no inhibition by trypsin and chymotrypsin inhibitors (TPCK and TLCK) or thiol reagents (PCMB and iodoacetic acid), further supported the view that the enzyme belonged to the serine protease family. Journal of Industrial Microbiology & Biotechnology (2001) 26, 387–393. Received 05 November 2000/ Accepted in revised form 23 April 2001  相似文献   

8.
Adenylate cyclase in synaptic plasma membranes from rat brain is activated by α-chymotrypsin or trypsin. These proteases also activate adenylate cyclase reconstituted from the catalytic subunit of adenylate cyclase and the partially purified fraction of the GTP-binding proteins containing both the stimulatory and inhibitory GTP-binding proteins. Properties of the activation of reconstituted adenylate cyclase by the proteases are as follows. (1) The proteases do not directly activate the catalytic subunit. However, the pre-treatment of the partially purified GTP-binding proteins with α-chymotrypsin (100 μg/ml) increases the subsequently reconstituted cyclase activity at least 3-fold. Trypsin (10–30 μg/ml) much more weakly enhances the cyclase activity. (2) α-Chymotrypsin and trypsin synergistically activate the cyclase. (3) Trypsin but not α-chymotrypsin no longer activates the cyclase when the purified stimulatory GTP-binding protein (Gs) replaces the partially purified GTP-binding proteins. (4) The stimulatory effects of α-chymotrypsin and trypsin on the cyclase activity are little or slight unless 5′-guanylylimidodiphosphate (Gpp(NH)p) is present in the reconstitution. (5) The purified βγ-subunits of the GTP-binding proteins markedly inhibit adenylate cyclase. This inhibition is nearly completely attenuated by treating the βα-subunits with α-chymotrypsin (> 10 μg/ml). (6) Trypsin (1–10 μg/ml) inactivates the GTPase of the α-subunit of the inhibitory GTP-binding protein (Gi). This inactivation of the GTPase seems to correlate with the activation of the reconstituted adenylate cyclase by trypsin.We conclude that two distinct protein components are involved in the activation of adenylate cyclase by α-chymotrypsin and trypsin. One component sensitive to α-chymotrypsin is probably the βγ-subunits of the GTP-binding proteins. The other component sensitive to trypsin may be the α-subunit of Gi.  相似文献   

9.
High activity alkaline protease was obtained when the enzyme was immobilized on Dowex MWA-1 (mesh 20–50) with 10% glutaraldehyde in chilled phosphate buffer (M/15, pH 6.5). Activity yields of the protease and rennet were 27 and 29, respectively. The highest activities appeared at 60°C, pH 10 for alkaline protease and 50°C, pH 4.0 for rennet. The properties of both proteases were not essentially changed by the immobilization except that the Km values of both enzymes were increased about tenfold as a result of immobilization. Both proteases in the immobilized state were more stable than those in the free state at 60°C. Other peptide hydrolases, β-galactosidase, invertase, and glucoamylase, were successfully immobilized with high activities, but lipase, hexokinase, glucose-6-phosphate dehydrogenase, and xanthine oxidase became inactive.  相似文献   

10.
Carbobenzoxy-L-phenylalanyl-triethylenetetraminyl-Sepharose (Z-L-Phe-T-Sepharose) was found to be an effective affinity adsorbent for bovine pancreatic alpha-chymotrypsin [EC 3.4.21.1] as well as neutral [EC 3.4.24.4] and alkaline [EC 3.4.21.14] proteases of Bacillus species. These enzymes were adsorbed in the neutral pH range. alpha-Chymotrypsin was recovered by elution with 0.1 A acetic acid while neutral subtilopeptidase was eluted with 0.5 M NaCl at pH 0. Thermolysin and subtilisin were found in eluates with 1.5 and 2.0 M guanidine-HCl at pH 7.2, respectively. The resulting enzymes appeared homogeneous on disc-electrophoresis and showed higher specific activities than those of crystalline or highly purified preparations available commercially. Modifications of the active site serines of alpha-chymotrypsin and subtilisin by treatment with diisopropylfluorophosphate (DFP) or phenylmethanesulfonyl fluoride (PMSF) resulted in loss in their binding abilities to the adsorbent. Complexes of porcine alpha2-macroglobulin with each of these four enzymes and that of Streptomyces-subtilisin inhibitor (S-SI) with subtilisin were also found in nonadsorbed fractions.  相似文献   

11.
Preliminary X-ray diffraction studies are reported of crystals of a complex of subtilisin BPN′ and a new protein, which specifically inhibits microbial alkaline proteases, and of crystals of the inhibitor alone.  相似文献   

12.

Objectives

To investigate the ability of the proteases, subtilisin and α-chymotrypsin (aCT), to inhibit the adhesion of Candida albicans biofilm to a polypropylene surface.

Results

The proteases were immobilized on plasma-treated polypropylene by covalently linking them with either glutaraldehyde (GA) or N′-diisopropylcarbodiimide (DIC) and N-hydroxysuccinimide (NHS). The immobilization did not negatively affect the enzyme activity and in the case of subtilisin, the activity was up to 640% higher than that of the free enzyme when using N-acetyl phenylalanine ethyl ester as the substrate. The efficacies against biofilm dispersal for the GA-linked SubC and aCT coatings were 41 and 55% higher than the control (polypropylene coated with only GA), respectively, whereas no effect was observed with enzymes immobilized with DIC and NHS. The higher dispersion efficacy observed for the proteases immobilized with GA could be both steric (proper orientation of the active site) and dynamic (higher protein mobility/flexibility).

Conclusions

Proteases immobilized on a polypropylene surface reduced the adhesion of C. albicans biofilms and therefore may be useful in developing anti-biofilm surfaces based on non-toxic molecules and sustainable strategies.
  相似文献   

13.
In this study, free radical scavengers and angiotensin I converting enzyme (ACE) inhibitors from the gelatin hyrdolysates of duck skin by-products were examined. Gelatin was obtained by pretreating duck skin by-products with acid and alkaline and hydrolysis using nine proteases (Alcalase, Collaganase, Flavourzyme, Neutrase, Protamex, papain, pepsin, trypsin and α-chymotrypsin). Of the various hydrolysates produced, the pepsin hydrolysate exhibited the highest free radical scavenging activity. The DPPH, hydroxyl and alkyl radical scavenging activity of pepsin was the most prominent with IC50 values of 1.230, 0.554 and 1.193 mg/ml respectively, which were measured using an electron spin resonance (ESR) spectrometer. However, when the gelatin was hydrolyzed as a combination of two enzymes, Collaganase and pepsin, the DPPH, hydroxyl and alkyl radical scavenging activity increased as the IC50 decreased to 0.632, 0.222 and 0.708 mg/ml, respectively. In addition, the ability of pepsin hydrolysates from the gelatin of duck skin by-products to inhibit oxidative damage to DNA was assessed in vitro by measuring the conversion of supercoiled pBR322 plasmid DNA to the open circular form. The enzymatic hydrolysates from the gelatin of duck skin by-products significantly protected hydroxyl radical-induced DNA damage in a dose-dependent manner, while also inhibiting the ACE activity of the α-chymotrypsin hydrolysates.These results indicate that enzymatic hydrolysates from the gelatin of duck skin by-products may be a beneficial ingredient in functional foods and/or pharmaceuticals.  相似文献   

14.
In view of the functional similarities between subtilisin Carlsberg and the alkaline protease fromConidiobolus coronatus, the biochemical and structural properties of the two enzymes were compared. In spite of their similar biochemical properties, e.g., pH optima, heat stability, molecular mass, pI, esterase activity, and inhibition by diisopropyl fluorophosphate and phenylmethlysulfonylfluoride, the proteases were structurally dissimilar as revealed by (1) their amino acid compositions, (2) their inhibition by subtilisin inhibitor, (3) their immunological response to specific anti-Conidiobolus protease antibody, and (4) their tryptic peptide maps. Our results demonstrate that although they are functionally analogous, theConidiobolus protease is structurally distinct from subtilisin Carlsberg. TheConidiobolus protease was also different from other bacterial and animal proteases (e.g. pronase, protease K, trypsin, and chymotrypsin) as evidenced by their lack of response to anti-Conidiobolus protease antibody in double diffusion and in neutralization assays. TheConidiobolus serine protease fails to obey the general rule that proteins with similar functions have similar primary sequences and, thus, are evolutionarily related. Our results strengthen the concept of convergent evolution for serine proteases and provide basis for research in evolutionary relationships among fungal, bacterial, and animal proteases.  相似文献   

15.
We report a functional protease assay in which liquid crystals (LCs) are used as signal reporters to transduce the test results into optical signals. In this assay, an oligopeptide substrate (CLSELDDRADALQAGASQFESSAAKLKRKYWWKNLK) is used as a probe. This oligopeptide can be cleaved by α-chymotrypsin at multiple locations and become smaller fragments after the cleavage. When the original oligopeptide is immobilized on a solid surface, its long flexible oligopeptide chain is able to influence the orientation of a thin layer of LC supported on the surface, as is evident as a bright spot on the surface. In contrast, when the shorter oligopeptide fragments are immobilized on the same surface, their shorter, less flexible chains cannot disrupt the orientation of LC, and a dark spot is observed. On the basis of the dark or bright signal from LC, α-chymotrypsin in buffer solution or complex media such as chicken broth can be detected by using the naked eye. However, when the incubation time is 3h, the limit of detection (LOD) for α-chymotrypsin in buffer solution is 50 ng/mL, whereas that in chicken broth is only 500 ng/mL. Unlike traditional antibody-based assays which show little difference between active and inactive α-chymotrypsin, only active protease can be detected in this assay. This study shows the potential utility of LCs for detecting functional proteases with good specificity and sensitivity.  相似文献   

16.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   

17.
Chymotrypsin and trypsin inhibitors persist throughout all developmental instars of Aedes aegypti. After a blood meal, inhibitor activity against chymotrypsin was more than double that of sugar-fed females, but only weak activity was detected in midguts where proteinase inhibitors has been thought to regulate proteinases during blood digestion. A fourfold increase in the ratio of abdominal/thoracic inhibitor activity after the blood meal strongly suggested that fat body, or other abdominal tissues, represent the major source of inhibitor. Chymotrypsin inhibitor activity was deposited in maturing oocytes. Similar results were obtained with blood-fed Anopheles albimanus. Chymotrypsin inhibitor was active against different mosquito proteinases and against bovine α-chymotrypsin and trypsin, but not against subtilisin, pancreatic elastase, or fungal proteases; chymotrypsin inhibitors did not interfere with bacterial growth. The hypothesis on the regulation of blood digestion through the action of proteinase inhibitors during the gonotrophic cycle was abandoned and its involvement in the phenoloxidase cascade in the mosquito egg chorion is suggested instead. Arch. Insect Biochem. Physiol. 36:315–333, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Among three alkaline protease inhibitors (API-2a, -2b, -2c) produced by Streptomyces griseoincarnatus strain No. KTo-250, API-2b was converted to API-2c in the growing system.

The cultural conditions were examined exclusively for the production of API-2b→ API-2c converting protease in the culture filtrate. The protease was purified about 1080-folds by salting-out with ammonium sulfate, column chromatography on DEAE-cellulose and gel filtration on Sephadex G–100.

The optimal and maximal caseinolytic activities of the protease were around pH 9.0 and at 28°C, respectively. The protease activity was inhibited by EDTA and DFP, but not by PCMB, o-phenanthroline, TPCK, TLCK, AP-I and S-SI. The protease was a DFP and EDTA-sensitive alkaline protease, and it required Ca2+ ion for its activity and stability.  相似文献   

19.
Subtilisin BPN′ was immobilized to porous glass via isothiocyanate coupling. The pH optimum of the enzyme was shifted to the alkaline side on binding. This effect was more pronounced with ethyl lactate than with N-tosyl arginine methyl ester (TAME). Presumably, the shift is a reflection of the negative charge on the surface of the glass. The Michaelis constant and Vmax of soluble subtilisin BPN′ with TAME were two and one orders of magnitude, respectively, lower than with ethyl lactate. Vmax, calculated per g of active enzyme, with TAME as the substrate was not affected by immobilization, while Vmax with ethyl lactate decreased greater than tenfold. The apparent KM decreased on immobilization with ethyl lactate as substrate and increased with TAME. Results are explained in terms of diffusional resistance and a possible attraction of ethyl lactate to the glass surface. Active site titration indicated that about 25%, of the immobilized enzyme was active.  相似文献   

20.
A survey of food components with α-glucosidase (AGH) inhibitory activity was conducted to identify a prophylactic effect for diabetes in food. Sardine muscle hydrolyzed by alkaline protease showed potent activity (IC50 = 48.7mg/ml) as well as green and oolong teas (IC50 = 11.1 and 11.3mg/ml, respectively). Furthermore, hydrolyzates prepared by various proteases gave differing AGH inhibitory activity. DEAE-Sephadex chromatography of the alkaline protease hydrolyzate eluted potent AGH inhibitors (IC50 = 15.6mg/ml) with a 50 mm phosphate buffer (pH 7.0) containing 0.3 m NaCl, and their subsequent separation by HPLC in an ODS column showed that there were some inhibitors possessing primary amino groups. This indicates that they would have been high anionic and peptidic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号