首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
7-Keto-8-aminopelargonic acid synthetase (KAPA synthetase) which catalyzes the formation of KAPA from pimelyl CoA and l-alanine, and is involved in biotin biosynthesis, was partially purified from a cell-free extract of Bacillus sphaericus by a procedure involving ammonium sulfate fraction ation, protamine treatment, and DEAE-cellulose column chromatography. The reaction product was bioautographically confirmed to be KAPA. Some properties of the enzyme were also investigated. Among the amino acids, only l-alanine was active as a substrate, condensing with pimelyl CoA, The reaction required pyridoxal phosphate but the other vitamin B6 compounds were inert. Typical inhibitors of pyridoxal phosphate enzymes showed marked inhibition to the reaction. Various amino acids such as l-cysteine, glycine, d-alanine, l-serine, l-histidine, and d-histidine were also found to be inhibitory.  相似文献   

2.
Several genes that may be involved in embryogenesis have been isolated from somatic embryos of carrot by many workers. However, the function of these genes has not been discovered yet. As the first step toward finding the function of these genes, we established a rapid and efficient method for transformation of carrot by using direct embryogenesis from hypocotyl segments treated with 2,4-dichlorophenoxyacetic acid (2,4-D) for a short period.  相似文献   

3.
4.
Resting cells of Escherichia coli strain D302(bioD302) can synthesize 7,8-diaminopelargonic acid from 7-keto-8-aminopelargonic acid. The product of this aminotransferase reaction has been identified by paper chromatography and electrophoresis. Glucose enhances the vitamer yield twofold. Of the 19 amino acids tested as amino donors, only methionine proved to be significantly stimulatory. In cell-free extracts, however, methionine was completely inactive unless both adenosine triphosphate (ATP) and Mg(2+) were present. S-Adenosyl-l-methionine (SAM) was about 10 times more effective than methionine, ATP, and Mg(2+). The optimal conditions for the reaction were determined, and substrate inhibition was found for 7-keto-8-aminopelargonic acid. It has been possible to eliminate certain impurities as amino donors in the commercial preparation of SAM and those that may arise in enzymatic reactions in which SAM is a substrate. The direct participation of SAM in the aminotransferase reaction seems a likely possibility.  相似文献   

5.
The 7-keto-8-aminopelargonic acid (KAPA) synthetase activities of cell-free extracts from various bacteria were investigated. The experiments on the substrate specificity of KAPA synthetase, using crude cell-free extracts from bacteria having high enzyme activity, showed that l-serine and pyruvic acid could replace l-alanine, but that, when the enzyme was partially purified, these compounds were not effective. Many kinds of amino acids such as l-cysteine, l-serine, d-alanine, glycine, d-histidine, and l-histidine, inhibited the enzyme activity. This inhibition was found to be competitive with l-alanine. Pyridoxal 5′-phosphate, which is a cofactor of the enzyme, also inhibited the enzyme activity at high concentrations. The repression of KAPA synthetase by biotin occurred in Bacillus subtilis and B. sphaericus but not in Micrococcus roseus and Pseudomonas fluorescens, even at a concentration of 1000 mµg per ml of biotin.  相似文献   

6.
Biotin-vitamers were synthesized from glutaric acid by resting cells of certain strains of Agrobacterium. Pimelic acid, which has been known as a biotin precursor in many microorganisms, was not effective at all to this species. Optimum conditions for the biosynthesis of the vitamers by resting cells of Agrobacterium radiobacter IAM 1526 were investigated. L-Lysine was also effective, but the rate of the biosynthesis of biotin-vitamers from L-lysine was one-half that from glutaric acid. The vitamer synthesized was bioautographically identified as desthiobiotin. It was confirmed that 14C-labelled glutaric acid was incorporated into the desthiobiotin molecule.  相似文献   

7.
The synthesis of desthiobiotin from 7,8-diaminopelargonic acid (DAP) was demonstrated in resting cell suspensions of Escherichia coli K-12 bioA mutants under conditions in which the biotin locus was derepressed. The biosynthetically formed desthiobiotin was identified by chromatography, electrophoresis, and by its ability to support the growth of yeast and those E. coli biotin auxotrophs that are blocked earlier in the biotin pathway. Optimal conditions for desthiobiotin synthesis were determined. Desthiobiotin synthetase activity was repressed 67% when partially derepressed resting cells were incubated in the presence of 3 ng of biotin per ml. Serine, bicarbonate, and glucose stimulated desthiobiotin synthesis apparently by acting as sources of CO(2). The results of this study are consistent with an earlier postulated pathway for biotin biosynthesis in E. coli: pimelic acid --> 7-oxo-8-aminopelargonic acid --> DAP --> desthiobiotin --> biotin.  相似文献   

8.
Pinon V  Ravanel S  Douce R  Alban C 《Plant physiology》2005,139(4):1666-1676
Biochemical and molecular characterization of the biotin biosynthetic pathway in plants has dealt primarily with biotin synthase. This enzyme catalyzing the last step of the pathway is localized in mitochondria. Other enzymes of the pathway are however largely unknown. In this study, a genomic-based approach allowed us to clone an Arabidopsis (Arabidopsis thaliana) cDNA coding 7-keto-8-aminopelargonic acid (KAPA) synthase, the first committed enzyme of the biotin synthesis pathway, which we named AtbioF. The function of the enzyme was demonstrated by functional complementation of an Escherichia coli mutant deficient in KAPA synthase reaction, and by measuring in vitro activity. Overproduction and purification of recombinant AtbioF protein enabled a thorough characterization of the kinetic properties of the enzyme and a spectroscopic study of the enzyme interaction with its substrates and product. This is the first characterization of a KAPA synthase reaction in eukaryotes. Finally, both green fluorescent protein-targeting experiments and western-blot analyses showed that the Arabidopsis KAPA synthase is present in cytosol, thus revealing a unique compartmentation of the plant biotin synthesis, split between cytosol and mitochondria. The significance of the complex compartmentation of biotin synthesis and utilization in the plant cell and its potential importance in the regulation of biotin metabolism are also discussed.  相似文献   

9.
Hydroxyphenylpyruvate reductase (HPPR) is an enzyme involved in the biosynthesis of rosmarinic acid in Lamiaceae reducing hydroxyphenylpyruvates in dependence of NAD(P)H to the corresponding hydroxyphenyllactates. The HPPR protein was purified from suspension cells of Coleus blumei accumulating high levels of rosmarinic acid by ammonium sulfate precipitation, anion exchange chromatography, hydroxylapatite chromatography, chromatography on 2',5'-ADP-Sepharose 4B and SDS-polyacrylamide gel electrophoresis. The protein was tryptically digested and the peptides sequenced. Sequence information was used to isolate a full-length cDNA-clone for HPPR (EMBL accession number AJ507733) by RT-PCR, screening of a C. blumei cDNA-library and 5'-RACE-PCR. The open reading frame of the HPPR-cDNA consists of 939 nucleotides encoding a protein of 313 amino acid residues. The sequence showed that HPPR belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases. The HPPR-cDNA was heterologously expressed in Escherichia coli and the protein was shown to catalyse the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvate to 4-hydroxyphenyllactate and 3,4-dihydroxyphenylpyruvate to 3,4-dihydroxyphenyllactate.  相似文献   

10.
By detailed BLAST searches of the genome database of various thermophiles, five ORFs with similarity to the bioF gene, which encodes 7-keto-8-aminopelargonic acid synthase (BioF) involved in biotin biosynthesis, of Escherichia coli were found: AqbioF, CltbioF, GkbioF, SytbioF, and TsebioF, from Aquifex aeolicus VF5, Clostridium thermocellum ATCC27405, Geobacillus kaustophilus JCM12893, Symbiobacterium thermophilum IAM14863, and Thermosynechococcus elongatus BP-1 respectively. The five purified recombinant bioF gene products, which were overexpressed in E. coli, had the enzyme activity of BioF. The optimum temperature range and thermostability of five BioFs, AqBioF, CltBioF, GkBioF, SytBioF, and TseBioF, were higher than those of E. coli BioF. In particular, AqBioF was found to show the highest thermostability of the α-oxoamine synthase family enzymes reported to date. Substrate specificity experiments revealed that SytBioF was also able to catalyze the reaction of 2-amino-3-ketobutyrate CoA ligase, a member of the α-oxoamine synthase family, and that it used acetyl-CoA and glycine as substrates, like the TTHA1582 protein of Thermus thermophilus. The other purified BioFs, AqBioF and GkBioF, did not show any activity with acyl-CoAs and amino acids other than pimeloyl-CoA and L-alanine as substrates.  相似文献   

11.
Abstract

A two step scheme has been developed for the purification of a dehydrogenase from mycelia of 84 hours old Aspergillus parasiticus (1-11-105 Wh 1), which catalyzes the conversion of norsolorinic acid (NA) to averantin (AVN). The dehydrogenase was purified from cell-free extracts using reactive green 19-agarose and norsolorinic acid-agarose affinity chromatography. The latter affinity matrix was synthesised by attaching norsolorinic acid to ω-aminohexylagarose. The purified protein was shown to be homogenous on non-denaturing polyacrylamide gel electrophoresis. A final purification of 215-fold was achieved. Results of gel filtration chromatography indicated the approximate molecular mass of the native protein to be 140 000 daltons. The isoelectric point of the protein was about 5.5 as determined by chromatofocusing. The reaction catalyzed by the dehydrogenase was optimum at pH 8.5 and between 25[ddot] to 35[ddot]C. The Km of the enzyme for NA and NADPH was determined to be 3.45 μM and 103 μM respectively.  相似文献   

12.
The enzymatic synthesis of 7-oxo-8-aminopelargonic acid (7-KAP) from pimelyl-coenzyme A and l-alanine was demonstrated in cell-free extracts of a biotin mutant of Escherichia coli K-12 which excretes only 7-KAP into the growth medium. This biotin vitamer was identified by its chromatographic and electrophoretic properties. The enzyme (7-KAP synthetase) was repressed when the organism was grown in biotin concentrations greater than 0.2 ng/ml. The parent strain and members of other mutant groups that excrete 7-KAP, in addition to other vitamers, also exhibited synthetase activity. A mutant group that failed to excrete 7-KAP was further sub-divided into three groups, one of which lacked synthetase activity. These results are discussed in relation to a previously proposed scheme for biotin biosynthesis in which the formation of 7-KAP is considered the point of entry for pimelic acid into the biotin pathway.  相似文献   

13.
周华  洪媛  严明  许琳 《生物工程学报》2007,23(2):278-283
为获得具有热稳定性的天冬氨酸转氨酶,从极端嗜热细菌Thermus thermophilus HB8中克隆得到天冬氨酸转氨酶基因aspC,并在大肠杆菌BL21(DE3)和Rosetta(DE3)中进行表达,发现在Rosetta(DE3)中具有较高的表达量。重组酶的最适反应pH是7.0,37℃下在pH8~10的缓冲液中保温1h酶活几乎不改变。重组酶反应的最适温度为75℃,酶活稳定的温度范围为25~55℃。重组酶在65℃时半衰期为3.5h,75℃时为2.5h。重组酶的KmKG为7.559mmol/L,VmaxKG为0.086mmol/(L·min),KmAsp为2.031mmol/L,VmaxAsp为0·024mmol/(L·min)。Ca2 、Fe3 、Mn2 等金属离子对酶活性有微弱抑制作用。  相似文献   

14.
15.
When 10 strains of lactic acid bacteria were incubated with 5′-hydroxyaverantin (HAVN), a precursor of aflatoxins, seven of them converted HAVN to averufin; the same reaction is found in aflatoxin biosynthesis of aflatoxigenic fungi. These bacteria had a dehydrogenase that catalyzed the reaction from HAVN to 5′-oxoaverantin (OAVN), which was so unstable that it was easily converted to averufin. The enzyme was purified from Lactobacillus brevis IFO 12005. The molecular mass of the enzyme was 100 kDa on gel filtration chromatography and 33 kDa on SDS polyacrylamide gel electrophoresis (SDS–PAGE). The gene encoding the enzyme was cloned and sequenced. The deduced protein consisted of 249 amino acids, and its estimated molecular mass was 25,873, in agreement with that by time of flight mass spectrometry (TOF MS) analysis. Although the deduced amino acid sequence showed about 50% identity to those reported for alcohol dehydrogenases from L. brevis or L. kefir, the commercially available alcohol dehydrogenase from L. kefir did not convert HAVN to OAVN. Aspergillus parasiticus HAVN dehydrogenase showed about 25% identity in amino acid sequence with the dehydrogenase and also with these two alcohol dehydrogenases.  相似文献   

16.
17.
为获得具有热稳定性的天冬氨酸转氨酶,从极端嗜热细菌Thermus thermophilus HB8中克隆得到天冬氨酸转氨酶基因aspC,并在大肠杆菌BL21(DE3)和Rosetta(DE3)中进行表达,发现在Rosetta(DE3)中具有较高的表达量。重组酶的最适反应pH是7.0,37 ℃下在pH8~10的缓冲液中保温1 h酶活几乎不改变。重组酶反应的最适温度为75 ℃,酶活稳定的温度范围为25~55℃。重组酶在65℃时半衰期为3.5h,75℃时为2.5h。重组酶的KmKG为7.559mmol/L,VmaxKG为0.086mmol/(L·min),KmAsp为2.031mmol/L,VmaxAsp为0.024mmol/(L·min)。Ca2+、Fe3+、Mn2+等金属离子对酶活性有微弱抑制作用。  相似文献   

18.
为获得具有热稳定性的天冬氨酸转氨酶,从极端嗜热细菌Thermus thermophilus HB8中克隆得到天冬氨酸转氨酶基因aspC,并在大肠杆菌BL21(DE3)和Rosetta(DE3)中进行表达,发现在Rosetta(DE3)中具有较高的表达量。重组酶的最适反应pH是7.0,37 ℃下在pH8~10的缓冲液中保温1 h酶活几乎不改变。重组酶反应的最适温度为75 ℃,酶活稳定的温度范围为25~55℃。重组酶在65℃时半衰期为3.5h,75℃时为2.5h。重组酶的KmKG为7.559mmol/L,VmaxKG为0.086mmol/(L·min),KmAsp为2.031mmol/L,VmaxAsp为0.024mmol/(L·min)。Ca2+、Fe3+、Mn2+等金属离子对酶活性有微弱抑制作用。  相似文献   

19.
Biosynthesis of the toxic and carcinogenic aflatoxins by the fungus Aspergillus flavus is a complicated process involving more that 27 enzymes and regulatory factors encoded by a clustered group of genes. Previous studies found that three enzymes, encoded by verA, ver-1, and aflY, are required for conversion of versicolorin A (VA), to demethylsterigmatocystin. We now show that a fourth enzyme, encoded by the previously uncharacterized gene, aflX (ordB), is also required for this conversion. A homolog of this gene, stcQ, is present in the A. nidulans sterigmatocystin (ST) biosynthesis cluster. Disruption of aflX in Aspergillus flavus gave transformants that accumulated ~4-fold more VA and fourfold less aflatoxin than the untransformed strain. Southern and Northern blot analyses confirmed that aflX was the only gene disrupted in these transformants. Feeding ST or O-methylsterigmatocystin, but not VA or earlier precursor metabolites, restored normal levels of AF production. The protein encoded by aflX is predicted to have domains typical of an NADH-dependent oxidoreductase. It has 27% amino acid identity to a protein encoded by the aflatoxin cluster gene, aflO (avfA). Some of domains in the protein are similar to those of epoxide hydrolases.  相似文献   

20.
通过DEAESephadexA 5 0阴离子交换柱 ,SephadexG 75分子筛 ,ResourseQ阴离子交换柱三步层析从湖南产的烙铁头蛇毒中分离、纯化得到一个L 氨基酸氧化酶 (TM LAO) ,它由两个非共价的亚基组成 ,每个亚基的分子量为 5 5kD。与台湾产的烙铁头蛇毒L 氨基酸氧化酶分子量 ( 70kD)不同。TM LAO的N末端氨基酸序列是ADNKNPLEECFRETNYEEFLEIAR ,与报道的蝰科的L 氨基酸氧化酶的相似性比眼镜蛇科的要高。TM LAO能抑制大肠杆菌、金黄色葡萄球菌和痢疾杆菌的生长 ,杀死肿瘤细胞以及诱导血小板聚集。这些活性能被过氧化氢酶所抑制 ,说明TM LAO生理学功能主要是通过酶反应产生的过氧化氢 (H2 O2 )介导的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号