首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Résumé LeP. brevi-compactum produit onze substances phénoliques différentes: l'acide mycophénolique, les acides phénoliques C10H10O5, C10H10O6, C10H10O7 et C8H6O6 et les substances phénoliques non identifiées désignées par les chiffres VI, VII, VIII, IX, X et XI. L'acide mycophénolique et les substances X et XI qui en dérivent, sont synthétisés par la moisissure suivant un processus plus complexe que les autres substances phénoliques et sans rapport direct avec lui. Ces dernières dérivent les unes des autres par une série de transformations dont certaines sont réversibles. Il semble que les substances VI et VII soient des intermédiaires entre C10H10O7 et C8H6O6, tandis que les substances VIII et IX seraient des produits de réduction de C10H10O5.
Summary P. brevi-compactum produces eleven phenolic different substances, mycophenolic acid, phenolic acids C10H10O5, C10H10O6, C10H10O7 and C8H6O6, and the non-identified substances designed by the numbers VI, VII, VIII, IX, X and XI. Mycophenolic acid and its derivates X and XI are synthesized by the mould according to a process more complex than the other phenolic substances and have no direct connection with them. The latter derive the one from the other, in a succession of transformations some of which are reversible. It seems that the substances VI and III are intermediaries between C10H10O7 and C8H6O6, the substances VIII and IX being produced by reduction of C10H10O5.
  相似文献   

2.
Tea (Camellia sinensis) catechins have been studied for disease prevention. These compounds undergo oxidation and produce H2O2. We have previously shown that holding tea solution or chewing tea leaves generates high salivary catechin levels. Herein, we examined the generation of H2O2 in the oral cavity by green tea solution or leaves. Human volunteers holding green tea solution (0.1–0.6%) developed salivary H2O2 with Cmax = 2.9–9.6 μM and AUC0 → ∞ = 8.5–285.3 μM min. Chewing 2 g green tea leaves produced higher levels of H2O2 (Cmax = 31.2 μM, AUC0 → ∞ = 1290.9 μM min). Salivary H2O2 correlated with catechin levels and with predicted levels of H2O2 (Cmax(expected) = 36 μM vs Cmax(determined) = 31.2 μM). Salivary H2O2 and catechin concentrations were similar to those that are biologically active in vitro. Catechin-generated H2O2 may, therefore, have a role in disease prevention by green tea.  相似文献   

3.
Viridominic acids A, C33H48O9, B, C33H48O10, C, C33H50O9 and cephalosporin P1 were isolated as chlorosis-inducing substances against higher plants. The isolation, physicochemical properties and biological activities of these compounds are described in detail.  相似文献   

4.
The structures of ten fatty acids, which were obtained by the hydrolysis of tunicamycin complex, were determined. GLC-mass, 1H NMR and IR spectra showed that the major acids were trans-α, β-unsaturated iso acids with the formula C14H28O2, C16H28O2, C16H30O2 and C17H32O2. The minor acids were α, β-unsaturated normal acids and saturated normal and iso acids.  相似文献   

5.
The mechanism of action of p-chloromercuribenzoate (PCMB) on Serratia marcescens nuclease was investigated. The analysis showed that PCMB forms complexes with DNA. Binding of C7H5O2Hg+ to DNA changes the secondary structure of the DNA. These changes alter the enzymatic activity of S. marcescens nuclease, which was previously found to be sensitive to the secondary structure of the substrates. The nuclease activity was either suppressed or stimulated in the presence of PCMB depending on the C7H5O2Hg+ to nucleotide equivalent ratio. Binding of C7H5O2Hg+ to DNA did not form an abortive enzyme–substrate complex. Binding of Mg2+ to the C7H5O2Hg–DNA complex caused appropriate changes in secondary structure of the substrate. Since Mg2+ and C7H5O2Hg+, though differing in the type of metal cation, are similar in their mechanisms of influence on enzymatic activity of S. marcescens nuclease, the identity of other metal-containing effectors in their mechanism of action on Serratia marcescens nuclease is assumed.  相似文献   

6.
From ezomycin complex produced by a strain of Streptomyces were isolated four components named ezomycins A1 (C26H40N8O16S), A2 (C19H28N6O13), B1 (C26H39N7O17S) and B2 (C19H27N5O14) which are new pyrimidine nucleosides. Ezomycins A1 and B1 containing l-cystathionine were found to be responsible for specific antimicrobial activity of the complex against Sclerotinia and Botrytis species.  相似文献   

7.
Seven additional components, polyoxins C, D, E, F, G, H and I were isolated from polyoxin complex. They have molecular formulae corresponding to C11H15N3O8, C17H23N5O14, C17H23N5O13, C23H30N6O15, C17H25N5O12, C23H32N6O13 and C19H24N4O12, respectively. These polyoxins except inactive polyoxins C and I were highly active against various kinds of phytopathogenic fungi. The close structural similarity among them including polyoxins A and B is also discussed.  相似文献   

8.
Organochalcogen (S/Se) functionalized chrysin derivatives were synthesized and coordinated with RuII(η6-p-cymene) to efficiently form ruthenium-based chemotherapeutic drug entities [C31H35O4SRuCl]; [C31H35O4SeRuCl]; [C33H31O4SRuCl]; and [C33H31O4SeRuCl]. The complexes were thoroughly characterized by analytical and various spectroscopic techniques which include elemental analysis, UV–vis, IR, NMR (1H, 13C, and 77Se NMR), and HR-MS. The interaction studies of these Ru(II) complexes were carried out with CT DNA/HSA by employing UV–vis, fluorescence and circular dichroic techniques in view to examine their chemotherapeutic potential. The complexes demonstrated predominant binding toward CTDNA via electrostatic interaction while, the extent of binding was quantified by calculating intrinsic binding constant (Kb) and binding constant (K) values which revealed higher binding affinity of selenium-based chrysin complexes as compared to their thio-analogs, following the order [C31H35O4SeRuCl]?>?[C33H31O4SeRuCl]?>?[C31H35O4SRuCl]?>?[C33H31O4SRuCl]. Moreover, interaction of these complexes with human serum albumin (HSA) was also investigated which suggested spontaneous interactions of complexes with the protein by hydrogen bonding and van der Waals forces. To visualize the preferential binding sites and affinity of complexes with DNA and HSA molecular docking studies were performed. Additionally, in vitro anticancer activity of the complexes were evaluated by SRB assay on selected cancer cell lines viz., HeLa (cervical), MIA-PA-CA-2 (pancreatic), MCF-7 (breast), Hep-G2 (Hepatoma), and SK-OV-3 (ovarian) which exhibited the superior cytotoxicity of complex [C31H35O4SeRuCl] as compared to other analogs on selective cancer phenotypes.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C5H10O2) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C7H16 and C7H8O (and then, by mp2d, C4H6O2 and propyne, C3H4) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C19H34O2 (or C19H36O2). The main fuel vapor thermal properties were taken as those of methyl palmitate C19H36O2 in the NASA polynomial form of the Burcat database. The special global reaction was introduced to “crack” the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NOx formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.  相似文献   

10.
Degradation of a β-O-4lignin substructure model dimer by a white rot fungus, Phanerochaete chrysosporium, was investigated using a culture containing H218O, and the following conclusions were made. a) The direct hydrolysis at Cβ of the β-O-4 dimer was not involved in formation of arylglycerol. b) About half of the oxygen at the benzyl (Cα) position of the glycerol was derived from H2O (H218O) and the other half was from the oxygen at the benzyl (Cα) position of the substrate β-O-4 dimer. c) But, the oxygen at the Cα position of the substrate β-O-4 dimer did not migrate to the Cα position of the aryglycerol.  相似文献   

11.
Four tuber-forming substances in Jerusalem artichoke were isolated from the leaves. The structures were established by spectroscopic methods as jasmonic acid (2), methyl β-D-glucopyranosyl tuberonate (3), and two new polyacetylene compounds, methyl β-D-glucopyranosyl helianthenate A (4, C19H24O8) and B (5, C17H22O8).  相似文献   

12.
《Autophagy》2013,9(10):1448-1461
We previously reported that autophagy is upregulated in Prnp-deficient (Prnp0/0) hippocampal neuronal cells in comparison to cellular prion protein (PrPC)-expressing (Prnp+/+) control cells under conditions of serum deprivation. In this study, we determined whether a protective mechanism of PrPC is associated with autophagy using Prnp0/0 hippocampal neuronal cells under hydrogen peroxide (H2O2)-induced oxidative stress. We found that Prnp0/0 cells were more susceptible to oxidative stress than Prnp+/+ cells in a dose- and time-dependent manner. In addition, we observed enhanced autophagy by immunoblotting, which detected the conversion of microtubule-associated protein 1 light chain 3 β (LC3B)-I to LC3B-II, and we observed increased punctate LC3B immunostaining in H2O2-treated Prnp0/0 cells compared with H2O2-treated control cells. Interestingly, this enhanced autophagy was due to impaired autophagic flux in the H2O2-treated Prnp0/0 cells, while the H2O2-treated Prnp+/+ cells showed enhanced autophagic flux. Furthermore, caspase-dependent and independent apoptosis was observed when both cell lines were exposed to H2O2. Moreover, the inhibition of autophagosome formation by Atg7 siRNA revealed that increased autophagic flux in Prnp+/+ cells contributes to the prosurvival effect of autophagy against H2O2 cytotoxicity. Taken together, our results provide the first experimental evidence that the deficiency of PrPC may impair autophagic flux via H2O2-induced oxidative stress.  相似文献   

13.
New tailored Cu(II) & Zn(II) metal-based antitumor drug entities were synthesized from substituted benzothiazole o?vanillin Schiff base ligands. The complexes were thoroughly characterized by elemental analysis, spectroscopic studies {IR, 1H & 13C NMR, ESI?MS, EPR} and magnetic susceptibility measurements. The structure activity relationship (SAR) studies of benzothiazole Cu(II) & Zn(II) complexes having molecular formulas [C30H22CuN5O7S2], [C30H20Cl2CuN5O7S2], [C30H20CuF2N5O7S2], [C30H22N4O4S2Zn], [C30H20Cl2N4O4S2Zn], and [C30H20F2N5O7S2Zn], with CT?DNA were performed by employing absorption, emission titrations, and hydrodynamic measurements. The DNA binding affinity was quantified by K b and K sv values which gave higher binding propensity for chloro-substituted Cu(II) [C30H20Cl2CuN5O7S2] complex, suggestive of groove binding mode with subtle partial intercalation. Molecular properties and drug likeness profile were assessed for the ligands and all the Lipinski’s rules were found to be obeyed. The antimicrobial potential of ligands and their Cu(II) & Zn(II) complexes were screened against some notably important pathogens viz., E. coli, S. aureus, P. aeruginosa, B. subtilis, and C. albicans. The cytotoxicity of the complexes [C30H20Cl2CuN5O7S2], [C30H20CuF2N5O7S2], [C30H20Cl2N4O4S2Zn], and [C30H20F2N5O7S2Zn] were evaluated against five human cancer cell lines viz., MCF?7 (breast), MIA?PA?CA?2 (pancreatic), HeLa (cervix) and Hep?G2 (Hepatoma) and A498 (Kidney) by SRB assay which revealed that chloro-substituted [C30H20Cl2CuN5O7S2] complex, exhibited pronounced specific cytotoxicity with GI50 value of 4.8 μg/ml against HeLa cell line. Molecular docking studies were also performed to explore the binding modes and orientation of the complexes in the DNA helix.  相似文献   

14.
A microorganism was isolated from the air of a patient-room and classified in the genus Oospora. This microorganism was cultured on a malt extract medium, and the mycellium was separated from the culture filtrate. A new compound (O-1), m.p. 129°C, C11H10O3, and eburicoic acid, m.p. 290°C, C31H50O3 were obtained from the dried mycellium. Another new compound (O-2), m.p. 176°C, C11H8O5 was obtained from the culture filtrate.  相似文献   

15.
Justicidin A, C22H18O7, mp 263°C and B, C21H16O6, mp 240°C were isolated as fish-killing components from Justicia Hayatai var. decumbens. The piscicidal activities of both compounds were demonstrated to be as strong as rotenone and about ten times stronger than that of pentachlorophenol.  相似文献   

16.
Mitomycin A (C16H19O6N3) and mitomycin C (C15H18O5N4) are pigments which have the quinoid structure. When treated with aqueous ammonia, mitomycin A is converted to mitomycin C. Acid hydrolysis of mitomycin C gave three degradation products, namely, C14H15O5N4, C14H15O6N3 and C13H14O5N2. Acetylation with acetic anhydride and pyridine and methylation with methyl iodide gave monoacetyl and monomethyl derivatives of mitomycin C respectively, though diacetate of demethyl derivatives were obtained when boiled with acetic anhydride.  相似文献   

17.
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.

Communicated by Ramaswamy H. Sarma  相似文献   


18.
Three strains of soil Streptomyces which belong to Streptomyces cacaoi were found to produce a new antifungal antibiotic complex, polyoxin complex. Polyoxin A and B were isolated in pure forms out of it. They are amphoteric compounds with the molecular formulas, C23H32N6O14 and C17H25N5O13 respectively. They showed very specific activities against phytopathogenic fungi.  相似文献   

19.
Summary Ethylene (C2H4) accumulation in flooded soil was related to oxygen (O2), redox potential (Eh), and flooding rate. The water status response of tobacco (Nicotiana, tabacum L.) to these conditions was evaluated from stem diameter, relative water content, leaf water potential, and C2H4 content of leaf tissue. Treatments were: flooded with either 0,5, or 15 cm of water per day for 6 days. By the third day, O2 in the soil decreased to less than 9% in treatments flooded with 5 or 15 cm of water. When O2 in the soil air was less than 9% and redox potential (Eh) was less than +150 mv, most of the soil air samples contained some C2H4 and 16% contained more than 6 ppm. Very little C2H4 was present in soil air when O2 exceeded 9%. Tobacco leaf C2H4 peaked 3 days after flooding and then declined to the preflooding level a day later, one day ahead of the rapid increase in soil C2H4. Wilting developed progressively beginning with the rise of C2H4 in the soil; leaf water potential, stem diameter, and relative leaf water content all were decreased. Soil-and plant-produced C2H4 are suggested as factors in reducing root permeability and increasing resistance to water uptake by tobacco.Contribution of the USDA-SEA/AR, in cooperation with the South Carolina Experiment Station.  相似文献   

20.
Examinations were made on two intermediate metabolites excreted after administration of (+)-catechin to the rabbit. From the infrared and ultraviolet spectra of these two substances (C11H12O3 and C11H12O4) and chemical properties of their various derivatives, they were identified as 3-hydroxyphenyl lactone and 3, 4-dihydroxyphenyl lactone. However, it still remains unknown whether they are δ- or γ-lactone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号