首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
NADPH-cytochrome c oxidoreductase obtained from the cells of Thiobacillus thiooxidans displayed the pH optimum of 8.7 and was completely inactivated by heating at 60°C for 10 min. Enzymatic activity was proportional to protein concentration and linear with time. The Km for NADPH was found to be 2.13 × 10?5 m. The enzyme was specific for NADPH and transferred electrons to cytochrome c and some dyes. p-Chloromercuribenzoate, EDTA and acryflavin inhibited the reductase activity.  相似文献   

2.
Copper dissolution from a sulfide ore (with covellite as the main copper phase) was investigated in cultures of Thiobacillus ferrooxidans or Thiobacillus thiooxidans and in abiotic controls. In unsupplemented media, T. ferrooxidans was more efficient than T. thiooxidans. In the presence of ferric iron, the dissolution of covellite was not significantly different in cultures inoculated with T. ferrooxidans or T. thiooxidans. However, the most extraction was found in T. thiooxidans cultures supplemented with ferrous sulfate. The first results were explained by the mechanism proposed by Schippers and Sand (Appl Envir Microbiol 65:319-321, 1999), which involves polysulfides and sulfur as intermediates. This mechanism was extended to explain the behavior of T. thiooxidans culture supplemented with ferrous iron.  相似文献   

3.
Summary Microbiological acid solutions produced byThiobacillus ferrooxidans andThiobacillus thiooxidans on pyritiferous concentrate were used to solubilize phosphate rock with a high grade in P2O5. Five different mixtures of pyritiferous concentrate and phosphate rock, in different proportions, were used in adequate liquid culture media. Phosphate solubilization ranged from 12% to 100% when 9K nutrients medium was used and from 12% to 89% when medium contained only 3.0g/l ammonium sulphate.  相似文献   

4.
Summary In the presence of iron, which is always associated with natural sulphide ores, the percentages of copper dissolution in the bioleaching of covellite were 34 and 45 % when Thiobacillus thiooxidans and Thiobacillus ferrooxidans were used together and when an indirect bioleaching with attached bacteria was performed respectively. In the latter, the percentage of copper dissolution was still higher than the percentages obtained with pure cultures (36 % with a T. thiooxidans culture and 40 % with a T. ferrooxidans culture).  相似文献   

5.
Summary Thiobacillus thiooxidans is capable of oxidizing sulfur in digested sludge, while decreasing the pH value from about 5.5 to, say, 1.0 to 1.5. Insoluble metal sulfides can be solubilized through this acidification. Thiobacillus ferrooxidans oxidises pyritic ore in the presence of 6% centrifuged sludge if the pH value is adjusted to about 2.5. When mixing T. thiooxidans and T. ferrooxidans with sludge and 1% sulfur, the former acidifies the sludge and the latter oxidizes metal sulfides; together they solubilize more metal than T. thiooxidans alone. The following metals solubilized from their sulfides have been investigated so far: iron, copper, zinc, nickel, and cadmium. The possibility of recycling metals from sewage sludge with this method is discussed.  相似文献   

6.
Summary A study has been made of microbial processes in the oxidation of pyrite in aicd sulphate soil material. Such soils are formed during aeration of marine muds rich in pyrite (FeS2). Bacteria of the type ofThiobacillus ferrooxidans are mainly responsible for the oxidation of pyrite, causing a pronounced acidification of the soil. However, becauseThiobacillus ferrooxidans functions optimally at pH values bellow 4.0, its activity cannot explain the initial pH drop from approximately neutral to about 4. This was shown to be a non-biological process, in which bacteria play an insignificant part. AlthoughThiobacillus thioparus andThiobacillus thiooxidans were isolated from the acidifying soil, they did not stimulate oxidation of FeS2, but utilized reduced sulphur compounds, which are formed during the non-biological oxidation of FeS2.Ethylene-oxide-sterilized and dry-sterilized soil inoculated with pure cultures of mixtures of various thiobacilli or with freshly sampled acid sulphate soil soil did not acidify faster than sterile blanks.Thiobacillus thiooxians. Thiobacillus thioparus. Thiobacillus intermedius andThiobacillus perometabolis increased from about 104 to 105 cells/ml in media with FeS2 as energy source. However, FeS2 oxidation in the inoculated media was not faster than in sterile blanks.Attempts to isolate microorganisms other thanThiobacillus ferrooxidans, like metallogenium orLeptospirillum ferrooxidans, which might also be involved in the oxidation of FeS2 were not successful.Addition of CaCO3 to the soil prevented acidification but did not stop non-biological oxidation of FeS2.  相似文献   

7.
Fatty Acids of Thiobacillus thiooxidans   总被引:2,自引:1,他引:1       下载免费PDF全文
Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid.  相似文献   

8.
Massive pyrite was shown to produce soluble iron, hydrogen, and sulfate ions on exposure to air and water. The rate of this process was directly proportional to the surface area of the mineral; it was unaffected by a drop in the pH and the presence of the ferrous and sulfate ions formed. Cupic ion had no effect but ferric ion accelerated pyrite degradation until all the ferric ion was consumed, in accordance with FeS2 + 2Fe3+ —>‐3Fe2+ + 2S°. Thiobacillus ferrooxidans increased pyrite degradation considerably; the presence of Thiobacillus thiooxidans had no influence on pyrite degradation.  相似文献   

9.
The data of this paper indicate that: 1. The "energy of activation" (µ) of sulfur oxidation by the autotrophic bacterium, Thiobacillus thiooxidans, is similar to that of other respirations. 2. The pH of the menstruum does not influence the respiration on sulfur between the limits of pH 2 to 4.8 once contact between the bacterial cell and the sulfur particle has been established but it does influence the rate at which such contact occurs. 3. The pO2 has little effect upon the respiration of this organism. 4. Most organic materials have no detectable effect upon the respiration of Thiobacillus thiooxidans, but the organic acids of terminal respiration seem to stimulate the respiration in the absence of oxidizable sulfur and certain of them inhibit sulfur oxidation. 5. In so far as inhibitor studies on intact cells are trustworthy, sulfur oxidation goes through iron-containing systems similar to cytochrome. It is possible that the oxygen contained in the sulfuric acid formed during sulfur oxidation is derived from the oxygen of the water.  相似文献   

10.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an α-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa 3-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 °C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A1 and myxothiazol, which are inhibitors of mitochondrial bc 1 complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

11.
The influence of carbon dioxide concentration in liquid medium on elemental sulphur oxidation by Thiobacillus thiooxidans bacteria presented in this paper can be divided into 3 differing relationships. First relationship shows increase of sulphur biooxidation rate with increase of carbon dioxide concentration in liquid medium. Second one shows decrease of S0 oxidation rate with increase of CO2 concentration in nutrient and in the third relationship there is no influence of carbon dioxide concentration on sulphur oxidation by Thiobacillus thiooxidans bacteria. The influence of carbon dioxide concentration in liquid nutrient on alive bacteria concentration in liquid medium is similar to those described above.  相似文献   

12.
The role of exopolymers in the bioleaching of a non-ferrous metal sulphide   总被引:4,自引:0,他引:4  
Exocellular polysaccharides were extracted from Thiobacillus ferrooxidans cells grown in the presence of iron. Cells without these compounds could not adhere to covellite. The loss of the layer of exocellular polysaccharides also affected the direct mechanism of bioleaching of covellite in a negative way. This ability to attach to and leach covellite was restored within a few hours when exopolymeric material was produced again. The addition of exocellular compounds to cells stripped of exocellular polymers also restored their ability to the same level as that of untreated cells. Thiobacillus thiooxidans was not able to attach to and leach covellite even when exocellular compounds from Thiobacillus ferrooxidans were added. Received 2 June 1998/ Accepted in revised form 8 January 1999  相似文献   

13.
Conversion of hydrogen sulphide (H2S) by the bacterium Thiobacillus thiooxidans to sulphur or sulphate was demonstrated in a continuous column contacter using a countercurrent flow of gas and liquid medium. The initial conversion to sulphur was much faster than subsequent oxidation to sulphate, allowing for removal of elemental sulphur. The rate of H2S removal increased with available surface area in the column bed and with time. The number of bacteria in the column increased very slowly with time, placing great importance on the initial concentration of bacteria in the column. Correspondence to: H. M. Lizama  相似文献   

14.
Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS2) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferrooxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the “indirect” mechanism. Mixed cultures of three isolates (strains T-21, T-23, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T-23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.  相似文献   

15.
Summary Continuous leaching of a pyritic flotation concentrate by mixed cultures of acidophilic bacteria was studied in a laboratory scale airlift reactor. Enrichment cultures adapted to the flotation concentrate contained Thiobacillus ferrooxidans and Thiobacillus thiooxidans. During the late stationary growth phase of these thiobacilli growth of Leptospirillum-like bacteria was observed, too. In discontinuous cultivation no significant influence of Leptospirillum-like bacteria on leaching rates could be detected. During continuous leaching at pH 1.5 Leptospirillum-like bacteria displaced Thiobacillus ferrooxidans. The iron leaching rate achieved by Leptospirillum-rich cultures was found to be up to 3.9 times higher than that by Leptospirillum-free cultures.  相似文献   

16.
Summary Direct bioleaching (no iron(II) present) by Thiobacillus ferrooxidans mainly occurs on the surface of the very insoluble sulphides but is more important in solution when the sulphides are more soluble. In this case, Thiobacillus thiooxidans, normally not able to leach directly insoluble sulphides, has an effective leaching action.  相似文献   

17.
Thiobacillus thiooxidans cells oxidized elemental sulfur to sulfite, with 1 mol of O2 consumption per mol of sulfur oxidized to sulfite, when the oxidation of sulfite was inhibited with 2-n-heptyl-4-hydroxyquinoline N-oxide.  相似文献   

18.
Two strains of Thiobacillus, T. ferrooxidans and T. thiooxidans, have been isolated from a bacterial inoculum cultivated during a one-year period in a 1001 continuous laboratory pilot for treatment of an arsenopyrite/pyrite concentrate. The optimum pH for the growth of both strains has been found to be between 1.7 and 2.5. Because of the high metal toxicity in bioleach pulps, the tolerance of T. ferrooxidans and T. thiooxidans with respect to iron and arsenic has been studied. The growth of both strains is inhibited with 10 g/l of ferric ion, 5 g/l of arsenite and 40 g/l of arsenate. 20 g/l of ferrous iron is toxic to T. ferrooxidans but 30 g/l is necessary to impede the growth of T. thiooxidans.  相似文献   

19.
Four cytochromes were isolated from soluble extracts of the aerobic sulfur bacterium, Thiobacillus neapolitanus. The two most abundant proteins were purified to homogeneity and thoroughly characterized. Cytochrome c-554 (547) is a monomeric, small molecular weight protein which is unusual in having two well-resolved alpha peaks in UV-visible absorption spectra. The redox potential is 208 mV. Native cytochrome c-549 is oligometric, but has a subunit size of about 26.000. The yield of this protein could be improved dramatically by washing membranes with 30% ammonium sulfate, but the material solubilized by this method had a larger native molecular weight than that in the initial 0.1 M Tris-Cl extract and behaved differently on chromatography. The properties of cytochrome c-549 including subunit size and UV-visible absorption spectra are similar to mitochondrial cytochrome c 1 and chloroplast cytochrome f, which suggests that it may be a modified form of the predominant membrane cytochrome. Based on cytochrome content, it is suggested that T. neapolitanus is not closely related to other thiobacilli.Dedicated to Prof. Dr. G. Drews on the occasion of his sixtieth birthday  相似文献   

20.
Trichosporon cutaneum metabolizes glucose purely oxidatively and cytochrome P450 was not detected in the reduced CO-difference spectrum of whole cells. However, in the isolated microsomal fraction the corresponding monooxygenase was present as shown by the appearence of cytochrome P450, NADPH-cytochrome c (P450) reductase and cytochrome b5. The absorption maximum of the terminal oxidase in the reduced CO-difference spectrum shifted between 447 and 448 nm. Derepression of biosynthesis of all components was achieved by transition of the cells from carbon- to oxygen-limited growth in continuous culture. The monooxygenase exhibited aminopyrine demethylation activity but not -hydroxylation activity of lauric acid. With respect to the growth limiting nutrient (carbon and oxygen respectively), mitochondrial cytochrome content showed an analogous behavior as cytochrome P450 and cytochrome b5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号