首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyridoxine-P and pyridoxamine-P oxidase in the extract of Alcaligenes faecalis was purified and some properties of the enzyme were investigated. Several lines of evidence indicated that both pyridoxine-P oxidation and pyridoxamine-P oxidative deamination were catalyzed with a single enzyme. The enzyme is a flavoprotein, and the treatment of the enzyme with acid ammonium sulfate resolved the enzyme into apo- and coenzyme. Flavin mononucleotide reactivated the apoenzyme for the oxidation of both substrates. Physiological role of the pyridoxine-P and pyridoxamine-P oxidase was suggested in relation to the transformation of vitamin B6 in microorganisms.  相似文献   

2.
Improved procedures for the isolation of apotryptophanase and its use in estimation of the vitamin B-6 coenzymes are presented. An excess of the apoenzyme is allowed to react with limiting amounts of pyridoxal-P. Estimation of the holotryptophanase thus formed by use of the chromogenic substrate. S-o-nitrophenyl-l-cysteine, provides a sensitive (1–400 pmol) and conveniently direct spectrophotometric assay for pyridoxal-P. For the specific estimation of pyridoxamine 5′-phosphate, samples are first reduced with NaBH4 to convert pyridoxal-P to pyridoxine-P (inactive). By nonenzymatic transamination with glyoxylate, pyridoxamine-P is then converted quantitatively to pyridoxal-P and estimated with apotryptophanase. The method gives excellent recoveries of the added coenzymes and indicates that in many tissue extracts pyridoxamine-P surpasses pyridoxal-P in concentration.  相似文献   

3.
Human erythrocytes rapidly convert vitamin B6 to pyridoxal-P and contain soluble phosphatase activity which dephosphorylates pyridoxal-P at a pH optimum of 6-6.5. This phosphatase was purified 51,000-fold with a yield of 39% by ammonium sulfate precipitation and chromatography on DEAE-Sepharose, Sephacryl S-200, hydroxylapatite, and reactive yellow 86-agarose. Sephacryl S-200 chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was a dimer with a molecular mass of approximately 64 kDa. The phosphatase required Mg2+ for activity. It specifically catalyzed the removal of phosphate from pyridoxal-P, pyridoxine-P, pyridoxamine-P, 4-pyridoxic acid-P, and 4-deoxypyridoxine-P at pH 7.4. Nucleotide phosphates, phosphoamino acids, and other phosphorylated compounds were not hydrolyzed significantly nor were they effective inhibitors of the enzyme. The phosphatase showed Michaelis-Menten kinetics with its substrates. It had a Km of 1.5 microM and a Vmax of 3.2 mumol/min/mg with pyridoxal-P. The Vmax/Km was greatest with pyridoxal-P greater than 4-pyridoxic acid-P greater than pyridoxine-P greater than pyridoxamine-P. The phosphatase was competitively inhibited by the product, inorganic phosphate, with a Ki of 0.8 mM, and weakly inhibited by pyridoxal. It was also inhibited by Zn2+, fluoride, molybdate, and EDTA, but was not inhibited by levamisole, L-phenylalanine, or L(+)-tartrate. These properties of the purified enzyme suggest that it is a unique acid phosphatase that specifically dephosphorylates vitamin B6-phosphates.  相似文献   

4.
Streptococcus faecalis 8043 concentrates extracellular [3H]pyridoxal or [3H]pyridoxamine primarily as the corresponding 5'-phosphates. Accumulation of pyridoxamine requires an exogenous energy source and is inhibited by glycolysis inhibitors. A membrane potential is not required for transport of pyridoxamine, and an artificially generated potential does not drive uptake in this organism. Based on this and other evidence, it is concluded that S. faecalis accumulates pyridoxamine by facilitated diffusion in conjunction with trapping by pyridoxal kinase. Pyridoxamine-P is not concentrated, but equilibrates with that provided externally. Lactobacillus casei 7469 concentrates radioactivity only from pyridoxal, which appears internally as pyridoxal-P, suggesting that it too absorbs the vitamin by facilitated diffusion plus trapping. The specificity of the growth requirement of S. faecalis and L. casei for vitamin B6 parallels the specificity of the transport systems for this vitamin in these organisms. Lactobacillus delbrueckii 7469, however, which specifically requires pyridoxamine-P or pyridoxal-P for growth, accumulates both these compounds and pyridoxine-P from the medium, apparently by active transport, but not pyridoxine, pyridoxamine, or pyridoxal. While pyridoxal-P and pyridoxamine-P are interconvertible in this organism, pyridoxine-P is not further metabolized, thus accounting for the specificity of the growth requirement. These and previous results show (a) that different organisms may employ quite different transport machinery in utilization of a given external nutrient, and (b) that the specificity of the growth requirement for a given form of a vitamin frequently arises from the specificity of transport, but that internal metabolism of the compounds also plays a significant role in some organisms.  相似文献   

5.
D-Amino acid transaminase from Bacillus sphaericus strain ATCC 14577 is a dimer with eight cysteinyl residues per molecule (T.S. Soper, W.M. Jones, and J.M. Manning (1979) J. Biol. Chem. 254, 10,901-10,905). The reaction of the cysteinyl residues with a variety of sulfhydryl reagents has been explored to gain insight into the physical environments around these cysteinyl residues in the absence or the presence of substrates. The native enzyme, in the pyridoxal-P conformation, appears to be a symmetrical dimer, whose SH groups react in pairs with anionic reagents such as 5,5'-dithiobis(2-nitrobenzoic acid) or the halo acids. Two SH groups react with either reagent without altering enzymatic activity. Two additional SH groups react with DTNB with loss of catalytic activity. Positively charged reagents such as beta-bromoethylamine are much more effective in inactivating the pyridoxal-P conformation of the enzyme with almost five of the eight SH groups reacting and this results in a significant loss in catalytic activity. The neutral reagent dithiodipyridine is able to detect some asymmetry in the pyridoxal-P conformation. Upon addition of a D-amino acid substrate, the enzyme is transformed into the pyridoxamine-P conformation. This conformation is much more reactive with anionic reagents and much less reactive with cationic reagents, suggesting that there is a significant change in the net charge around one of the SH groups in the pyridoxamine-P conformation. Also, titration with DTNB indicates that the enzyme is a much more asymmetric dimmer in the pyridoxamine-P conformation than in the pyridoxal-P conformation. Thus, upon binding of a D-amino acid substrate, D-amino acid transaminase is transformed into the pyridoxamine-P conformation. This results in a significant change in the environment of four of the sulfhydryl groups of the enzyme. We conclude that the enzyme is transformed from a symmetrical dimer into an asymmetrical dimer and that the net charge of one of the pairs of cysteinyl groups is changed from a net negative charge into a net positive charge. These results suggest that there is a significant conformational change that occurs during the transition from the pyridoxal-P into the pyridoxamine-P form of this transaminase.  相似文献   

6.
Following amino acid or ammonium starvation, ppGpp is accumulated by Rhizobium meliloti strain 1021 but not by R. meliloti strain 41 or Rhizobium tropici. Azorhizobium caulinodans ORS571 produced ppGpp following amino acid deprivation; however, the free-living nitrogen-fixing bacteria Azotobacter vinelandii and Azomonas agilis did not produce ppGpp. Western blot analysis using anti-RelA antibody demonstrated that R. meliloti strain 1021, Azotobacter vinelandii and Azorhizobium caulinodans cross-reacted under conditions that detected RelA in Escherichia coli CF1648. Cross-reaction was not observed in R. meliloti strain 41, R. tropici, or Azomonas agilis. All strains that accumulated ppGpp also produced high intracellular levels of ATP. Received: 28 August 1998 / Accepted: 11 November 1998  相似文献   

7.
1. Vitamin B6-sufficient rats had moderate pyridoxamine-P oxidase specific activities in heart, brain, kidney and liver, but no detectable activity in skeletal muscle. Vitamin B6-deficiency in rats resulted in a decreased oxidase activity in liver but no change in the activities in other tissues. 2. The pyridoxamine-P oxidase activity in vitamin B6-sufficient mice was high in liver, moderate in brain and kidney, and not measurable in skeletal muscle and heart. Vitamin B6-deficient, compared with control mice, had decreased oxidase activities in brain, kidney and liver. 3. Mouse erythrocytes took up pyridoxine more rapidly than did rat and human erythrocytes. 4. Mouse and human erythrocytes rapidly converted pyridoxine to pyridoxal-P. Rat, hamster and rabbit erythrocytes had appreciably lower pyridoxamine-P oxidase activity than did mouse and human erythrocytes.  相似文献   

8.
Some enzymatic properties were examined on the transaminase (DOPA transaminase) which catalyzes the reaction between 3,4-dihydroxy phenyl pyruvate (DOPP) and certain amino acids to form 3,4-dihydroxyphenyl-L-alanine (DOPA). The cell-free extract from Alcaligenes faecalis IAM 1015 was used as the DOPA transaminase. L-Aspartate, L-glutamate, and L-phenylalanine were utilized efficiently as amino donor. The occurrence of three kinds of transaminase—aspartate-DOPP transaminase (ADT), glutamate-DOPP transaminase (GDT), and phenylalanine-DOPP transaminase (PDT)—was postulated.

The pH optima of these enzymes were observed in the alkaline pH range. The enzymes were unstable in the acidic range and inactivated above 60°C. Ca2+, Mg2+, and Mn2+ protected PDT from heat denaturation. Fe2+, Cu2+, and Al3+ remarkably inhibited the enzyme reaction.  相似文献   

9.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

10.
The respiratory system of chemolithoautotrophically-grown Alcaligenes latus contains a, b, and c type cytochromes. Two cytochrome oxidases were identified by their carbon monoxide difference spectra and their differing sensitivities to cyanide and carbon monoxide. The oxidases were cytochrome o and an a-type cytochrome. Ubiquinone was present in A. latus membranes and could be reduced by H2. The quinone analogue, 2-heptyl-4-hydroxy-quinoline-N-oxide (HQNO), was a strong inhibitor of the H2 oxidase reaction, but did not prevent the reduction of either ubiquinone or the cytochromes.Abbreviations HQNO 2-heptyl-4-hydroxy-quinoline-N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

11.
The effects of several factors on the enzymatic production of 3,4-dihydroxyphenyl-l-alanine (DOPA) and 3,4-dimethoxyphenyl-l-alanine (DMPA) by transamination reaction were investigated using wet cells of Alcaligenes faecalis IAM 1015. In addition, some experiments for the cultural conditions for transaminase production were performed. DOPA and DMPA were obtained in 80 and 90% yields, respectively, using the mixture of l-glutamate and l-aspartate as amino donors. Accumulation of DMPA in the culture under the growing state of the bacteria was also confirmed.  相似文献   

12.
《Anaerobe》1999,5(5):539-546
Brachyspira (Serpulina) hyodysenteriae cells consume oxygen during growth under a 1%O2:99%N2atmosphere. A major mechanism of O2metabolism by this anaerobic spirochete is the enzyme NADH oxidase (EC 1.6.99.3). In these investigations, the NADH oxidase gene (nox) of B. hyodysenteriae strain B204 was cloned, expressed in Escherichia coli, and sequenced. By direct cloning of aHind III-digested DNA fragment which hybridized with a nox DNA probe and by amplification of B204 DNA through the use of inverse PCR techniques, overlapping portions of the nox gene were identified and sequenced. The nox gene and flanking chromosome regions (1.7 kb total) were then amplified and cloned into plasmid pCRII. Lysates of E. coli cells transformed with this recombinant plasmid expressed NADH oxidase activity (1.1 μmol NADH oxidized/min/mg protein) and contained a protein reacting with swine antiserum raised against purified B. hyodysenteriae NADH oxidase. The nox ORF (1.3 kb) encodes a protein with a predicted molecular mass of 50 158 kDa. The B. hyodysenteriae NADH oxidase shares significant (46%) amino acid sequence identity and common functional domains with the NADH oxidases of Enterococcus faecalis and Streptococcus mutans, suggesting a common evolutionary origin for these proteins. Cloning of the B. hyodysenteriae nox gene is an important step towards the goal of generating B. hyodysenteriae mutant strains lacking NADH oxidase and for investigating the significance of NADH oxidase in the physiology and pathogenesis of this anaerobic spirochete.  相似文献   

13.
Nitrogen fixation by aerobic prokaryotes appears paradoxical: the nitrogen-fixing enzymes—nitrogenases—are notoriously oxygen-labile, yet many bacteria fix nitrogen aerobically. This review summarises the evidence that cytochrome bd, a terminal oxidase unrelated to the mitochondrial and many other bacterial oxidases, plays a crucial role in aerotolerant nitrogen fixation in Azotobacter vinelandii and other bacteria by rapidly consuming oxygen during uncoupled respiration. We review the pertinent properties of this oxidase, particularly its complement of redox centres, the catalytic cycle of oxygen reduction, the affinity of the oxidase for oxygen, and the regulation of cytochrome bd gene expression. The roles of other oxidases and other mechanisms for limiting damage to nitrogenase are assessed.  相似文献   

14.
Cytochrome cbb 3 oxidase, a member of the heme–copper oxidase superfamily, catalyses the reduction of oxygen to water and generates a proton gradient. Cytochrome c oxidases are characterized by a catalytic subunit (subunit I) containing two hemes and one copper ion ligated by six invariant histidine residues, which are diagnostic of heme–copper oxidases in all type of the heme–copper oxidase superfamily. Alignments of the amino acid sequences of subunit I (FixN or CcoN) of the cbb 3-type oxidases show that catalytic subunit also contains six non-canonical histidine residues that are conserved in all CcoN subunits of the cbb 3 oxidase, but not the catalytic subunits of other members of heme–copper oxidases superfamily. The function of these six CcoN-specific conserved histidines of cbb 3-type oxidase in R. capsulatus is unknown. To analyze the contribution of the two invariant histidines of CcoN, H300 and H394, in activity and assembly of the Rhodobacter capsulatus cbb 3-type oxidase, they were substituted for valine and alanine, respectively by site-directed mutagenesis. H300V and H394A mutations were analyzed with respect to their activity and assembly. It was found that H394A mutation led to a defect in the assembly of both CcoP and CcoO in the membrane, which results in almost complete loss of activity and that although the H300V mutant is normally assembled in the membrane and retain their stability, its catalytic activity is significantly reduced when compared with wild-type oxidase.  相似文献   

15.
We report the production of two types of siderophores namely catecholate and hydroxamate in modified succinic acid medium (SM) from Alcaligenes faecalis. Two fractions of siderophores were purified on amberlite XAD, major fraction was hydroxamate type having a λmax at 224 nm and minor fraction appeared as catecholate with a λmax of 264 nm. The recovery yield obtained from major and minor fractions was 297 and 50 mg ml−1 respectively. The IEF pattern of XAD-4 purified siderophore suggested the pI value of 6.5. Cross feeding studies revealed that A. faecalis accepts heterologous as well as self (hydroxamate) siderophore in both free and iron complexed forms however; the rate of siderophore uptake was more in case of siderophores complexed to iron. Siderophore iron uptake studies indicated the differences between hydroxamate siderophore of A. faecalis and Alc E, a siderophore of Alcaligenes eutrophus.  相似文献   

16.
Chromobacterium sp. strain DS-1 produces an extracellular cholesterol oxidase that is very stable at high temperatures and in the presence of organic solvents and detergents. In this study, we cloned and sequenced the structural gene encoding the cholesterol oxidase. The primary translation product was predicted to be 584 amino acid residues. The mature product is composed of 540 amino acid residues. The amino acid sequence of the product showed significant similarity (53–62%) to the cholesterol oxidases from Burkholderia spp. and Pseudomonas aeruginosa. The DNA fragment corresponding to the mature enzyme was subcloned in the pET-21d(+) expression vector and expressed as an active product in Escherichia coli. The cholesterol oxidase produced from the recombinant E. coli was purified to homogeneity. The physicochemical properties were similar to those of native enzyme purified from strain DS-1. K m and V max values of the cholesterol oxidase were estimated from Lineweaver–Burk plots. The V max/K m ratio of the enzyme was higher than those of commercially available cholesterol oxidases. The circular dichroism spectral analysis of the recombinant DS-1 enzyme and Burkholderia cepacia ST-200 cholesterol oxidase showed that the conformational stability of the DS-1 enzyme was higher than that of B. cepacia ST-200 enzyme at higher temperatures.  相似文献   

17.
The equilibrium constant (KX) for the reaction D-serine dehydratase + pyridoxamine-P in equilibrium KX D-serine apodehydratase: pyridoxamine-P + pyridoxal-P was determined. At 25 degreees, pH 7.80, KX increases from 5.4 times 10-minus 5 to 21 times 10-minus 5 as T/2 is increased from 0.33 to 0.66. A value of 1.3 times 10-minus 4 M at 25 degrees, pH 7.80, T/2 0.33 for the equilibrium constant (KPMP) for dissociation of pyridoxamine-P from D-serine apodehydratase was determined from the ratio of the equilibrium constant for dissociation of pyridoxal-P from holoenzyme to KX. Pyridoxamine-P and the thiazolidine, formed from pyridoxal-P and cysteine, were found to have similar affinities for D-serine apodehydratase. Using the affinities of these derivatives as a measure of the noncovalent interactions between cofactor and protein, it was possible to estimate the contribution of the Schiff base linkage to the stability of the complex formed between pyridoxal-P and protein. The covalent Schiff base linkage in the holoenzyme was found to be no more stable than the Schiff base linkage formed between 6-aminocaproic acid and pyridoxal-P. The contribution of noncovalent interactions to the stability of the cofactor-protein complex was shown to be at least 20 to 40 times greater than the contribution of the covalent Schiff base linkage.  相似文献   

18.
【目的】探讨光催化下纳米TiN对粪产碱杆菌代谢情况的影响。【方法】我们通过分别添加空穴捕获剂及电子捕获剂,使用三维荧光光谱分析比较光生空穴和光电子对粪产碱杆菌(Alcaligenes faecalis)生长代谢的不同作用。【结果】光照条件下,空穴捕获剂组明显生成了较多的类腐殖质类物质,且比其他实验组有更强的NADH的荧光峰出现,峰强度是其他实验组的4到5倍。黑暗条件下,各实验组之间的代谢产物无明显变化。光照条件下的电子捕获剂组比黑暗条件下有更强的类蛋白质类荧光峰。【结论】本文首次报道光电子会促进粪产碱杆菌产生腐殖质类物质,且会产生更多的能量。光生空穴会促进粪产碱杆菌产生蛋白质类物质。  相似文献   

19.
Summary An upflow anaerobic filter was developed with a microbial consortium, consisting predominantly of Alcaligenes faecalis and Commamonas acidovorans, immobilized on a gravel substratum. Remazol Black B, a commercially important textile dye, was decolourised by >95% within 48 h (operating conditions: initial dye concentration, 0.5g/l; pH 7.0; flow rate 0.1 l/hour; room temperature fluctuated between 12 and 20° C)  相似文献   

20.
Quinolinate inhibits several aminotransferases (ornithine, alanine, and aspartate). However, it is considerably more potent as an inhibitor of liver and heart cytoplasmic aspartate aminotransferase. It is a much less potent inhibitor of mitochondrial aspartate aminotransferases. Quinolinate is bound to the active site of cytoplasmic aspartate aminotransferase. It has a much greater affinity for the pyridoximine-P than the pyridoxal-P form of the enzyme. According to kinetic results, the inhibition or dissociation constant of quinolinate is 0.2 and 20 mm, respectively, for the pyridoxamine-P and the pyridoxal-P forms of the enzyme. Since quinolinate is mainly bound to the pyridoxamine-P form: (a) it is a potent competitive inhibitor of α-ketoglutarate but has little effect when α-ketoglutarate is saturating even if the level of aspartate is low; (b) it decreases the effect of α-ketoglutarate on the absorption spectrum of the pyridoxamine-P form; and (c) it enhances the effect of glutamate on the absorption spectrum of the pyridoxal-P form. Quinolinate is also apparently bound to the apoenzyme since it inhibits reconstitution by either pyridoxamine-P or pyridoxal-P. Since quinolinate is a competitive inhibitor of α-ketoglutarate, it is possible that part of the inhibitory effect of quinolinate on hepatic gluconeogenesis could result from quinolinate inhibiting the conversion of aspartate to oxalacetate by the cytoplasmic aspartate aminotransferase. Quinolinate has no effect on either rat or bovine liver glutamate dehydrogenase or on kidney glutamate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号